Explanation:
Assuming the wall is frictionless, there are four forces acting on the ladder.
Weight pulling down at the center of the ladder (mg).
Reaction force pushing to the left at the wall (Rw).
Reaction force pushing up at the foot of the ladder (Rf).
Friction force pushing to the right at the foot of the ladder (Ff).
(a) Calculate the reaction force at the wall.
Take the sum of the moments about the foot of the ladder.
∑τ = Iα
Rw (3.0 sin 60°) − mg (1.5 cos 60°) = 0
Rw (3.0 sin 60°) = mg (1.5 cos 60°)
Rw = mg / (2 tan 60°)
Rw = (10 kg) (9.8 m/s²) / (2√3)
Rw = 28 N
(b) State the friction at the foot of the ladder.
Take the sum of the forces in the x direction.
∑F = ma
Ff − Rw = 0
Ff = Rw
Ff = 28 N
(c) State the reaction at the foot of the ladder.
Take the sum of the forces in the y direction.
∑F = ma
Rf − mg = 0
Rf = mg
Rf = 98 N
Answer:
1 N
Explanation:
First the equation is momentum = Force / distance
20 cm = 0.2 m
5 N/m = F / 0.2 m
F = 1 N
X ray is one of the electromagnetic waves.
As per Clark Maxwell's electromagnetic theory, all the electromagnetic waves move with the velocity of light i.e c= 3×10^8 m/s
In case of electromagnetic waves,the electric field and magnetic field are perpendicular to each other as well as perpendicular to the direction of propagation.The electromagnetic waves exhibit the property of polarisation. Hence they are transverse in nature.
Hence the best statements about X- ray will be-
1- X -rays are electromagnetic waves
2-X-rays are transverse transverse waves
3- X- rays travel at the speed of light.
Answer:
3.185×10^-29 kgm/s
Explanation:
Momentum(p)=mass×velocity
=9.1×10^-31×3.5×10
=3.185×10^-29 kgm/s
Answer:
magnitude=34.45 m
direction=
Explanation:
Assuming the initial point P1 of this vector is at the origin:
P1=(X1,Y1)=(0,0)
And knowing the other point is P2=(X2,Y2)=(19.5,28.4)
We can find the magnitude and direction of this vector, taking into account a vector has a initial and a final point, with an x-component and a y-component.
For the magnitude we will use the formula to calculate the distance
between two points:
(1)
(2)
(3)
(4) This is the magnitude of the vector
For the direction, which is the measure of the angle the vector makes with a horizontal line, we will use the following formula:
(5)
(6)
(7)
Finding
:
(8)
(9) This is the direction of the vector