<span>7.7 m/s
First, determine the acceleration you subject the sled to. You have a mass of 15 kg being subjected to a force of 180 N, so
180 N / 15 kg = 180 (kg m)/s^2 / 15 kg = 12 m/s^2
Now determine how long you pushed it. For constant acceleration the equation is
d = 0.5 A T^2
Substitute the known values getting,
2.5 m = 0.5 12 m/s^2 T^2
2.5 m = 6 m/s^2 T^2
Solve for T
2.5 m = 6 m/s^2 T^2
0.41667 s^2 = T^2
0.645497224 s = T
Now to get the velocity, multiply the time by the acceleration, giving
0.645497224 s * 12 m/s^2 = 7.745966692 m/s
After rounding to 2 significant figures, you get 7.7 m/s</span>
Answer:
4.
a) W = 750 J
b) W = 2250 J
c) t = 2 sec
5. Answered in explanation
Explanation:
4.
The formula of power is given as:
P = W/t
where,
P = Power
W = Work Done
t = Time Taken
a)
Here,
P = 750 W
t = 1 sec
W = ?
Therefore,
750 W = W/1 sec
<u>W = 750 J</u>
b)
Here,
P = 750 W
t = 3 sec
W = ?
Therefore,
750 W = W/3 sec
W = (750 W)(3 sec)
<u>W = 2250 J</u>
c)
Here,
P = 750 W
t = ?
W = 1500 J
Therefore,
750 W = 1500 J/t
t = 1500 J/750 W
<u>t = 2 sec</u>
<u></u>
5.
According to Kinetic Particle Theory, the molecules are tightly packed with each other, by strong inter-molecular forces and they can only vibrate at their position. While, molecules or particles in liquids have lesser attractive forces among them. They can move in layers and can take the shape of any container. <u>This is the reason why solid has a definite shape and liquid has none.</u>
(a) Zero
The maximum efficiency (Carnot efficiency) of a heat engine is given by

where
is the low-temperature reservoir
is the high-temperature reservoir
For the heat engine in the problem, we have:


Therefore, the maximum efficiency is

(b) Zero
The efficiency of a heat engine can also be rewritten as

where
W is the work performed by the engine
is the heat absorbed from the high-temperature reservoir
In this problem, we know

Therefore, since the term
cannot be equal to infinity, the numerator of the fraction must be zero as well, which means
W = 0
So the engine cannot perform any work.
"The distance that the force moves" is the one among the following choices given in the question that must be increased, if a simple machine reduces the strength of a force. The correct option among all the options that are given in the question is the first option or option "A". I hope the answer helped you.
U need to set up n solve the general eqn for simple harmonic motion:
x" = -(k/m)x
solution is x(t) = (x0)*cos(wt) + (v0/w)*sin(wt)
where w=sqrt(k/m), x0 is x-position at t=0 and v0 is vel at t=0
u already calculated f in Q.2 and w = 2*pi*f
x0 is 0 as it starts at eqm
v0 is given at 5.1
so u have x(t)
vel is given by x'(t) = (x0)*(-w)*sin(wt) + (v0/w)*w*cos(wt)
substitute t=0.32, x0=0, v0=5.1 n w in the above, u can solve for v at t=0.32.