Answer:
421.83 m.
Explanation:
The following data were obtained from the question:
Height (h) = 396.9 m
Initial velocity (u) = 46.87 m/s
Horizontal distance (s) =...?
First, we shall determine the time taken for the ball to get to the ground.
This can be calculated by doing the following:
t = √(2h/g)
Acceleration due to gravity (g) = 9.8 m/s²
Height (h) = 396.9 m
Time (t) =.?
t = √(2h/g)
t = √(2 x 396.9 / 9.8)
t = √81
t = 9 secs.
Therefore, it took 9 secs fir the ball to get to the ground.
Finally, we shall determine the horizontal distance travelled by the ball as illustrated below:
Time (t) = 9 secs.
Initial velocity (u) = 46.87 m/s
Horizontal distance (s) =...?
s = ut
s = 46.87 x 9
s = 421.83 m
Therefore, the horizontal distance travelled by the ball is 421.83 m
Collision domain is a portion in the network where there is a possibility of formation of packets. This occurs when two or more devices are able to send a packet to a single switch or port on the network that is shared, on the same time. It was noted that this collision domain reduces the efficiency of the network.
For this item, the first packet is the whole switch with the three devices. Next one would be first of the three devices that is connected to the other port. Similarly, the third one would be the second of the three devices that is also connected to the switch. Therefore, the answer is 3.
It can be a) 12Hz.................
"This resolving power" was obviously stated earlier, somewhere before the point where you started copying. With no resolving power specified, there's actually no question, and so no answer.