Answer:
Either B or D. The answer itself is 2.
Explanation:
The equation for the kinetic energy would be 1/2*mv^2.
When m is doubled, we can plug in 1 and 2 to compare our answers.
Plugging in 1 for mass would give us the answer 1/2*v^2.
Plugging in 2 for mass would give us v^2. This means that the velocity was multiplied by 2, meaning that the answer is it is multiplied by 2.
I am not sure which answer is correct since there seems to be two answer choices with 2 in it, but the answer is either B or D (I will call it ABCD because I do not want to cause confusion by saying 2 multiple times).
Answer:
S = 16 m
Explanation:
Given that
The frequency of the water waves, f = 4 Hz
The wavelength of the water waves, λ = 2 m
The time the waves reached the shore, t = 2 s
The relation between the velocity, wavelength, and the frequency of the wave is given by the relation,
v = f λ m/s
Substituting the given values in the above equation,
v = 4 x 2
= 8 m/s
The velocity of the water waves is v = 8 m/s
The distance between the shore and boat is given by
s = v x t
= 8 x 2
= 16 m
Hence, the distance between the boat and the shore is, s = 16 m
Answer:
a) 70 N, b) b. Each initially applied a force bigger than static friction to get the box moving and accelerating, then when the desired final speed was achieved they reduced the force to make the net force zero.
Explanation:
a) A constant speed means that magnitude of friction force is equal to the magnitude of the external force. The friction force is directly proportional to the normal force, which is equal to the weight of the box. Therefore, the magnitude of the force is 70 N.
b) Alice used initially a greater force to accelerate the box up to needed speed and later reduced the external force to keep speed constant. The right choice is option b.
Answer: 704
Explanation:Vi = 0 m/s
vf = 65 m/s
a = 3 m/s2
d = ??
vf2 = vi2 + 2*a*d
(65 m/s)2 = (0 m/s)2 + 2*(3 m/s2)*d
4225 m2/s2 = (0 m/s)2 + (6 m/s2)*d
(4225 m 2/m2)/(6 m/s2) = d
d = 704 m