Conductors are better than insulators to carry electric current because they give the electricity the ability to flow freely throughout circuits. This helps the insulator to do its job of containing the electric charge. Examples of this would be a tv plug - the rubber surrounding the TV plug helps to keep the conductors (wires) in place, thus helping to facilitate an electric charge.
This represents a primary amine. An amine has a nitrogen group that is connected to three substituents via single bonds. The number of carbon-based substitutents determines whether it is primary, secondary, or tertiary. In this case, since 2 substitutents are just hydrogen atoms, and only one has a carbon-based skeleton, this is a primary amine.
Answer:
Mass = 36 g
Explanation:
Given data:
Mass of water formed = ?
Mass of hydrogen = 4.04 g
Mass of oxygen = 31.98 g
Solution:
Chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of hydrogen:
Number of moles = mass/molar mass
Number of moles = 4.04 g/ 2 g/mol
Number of moles = 2.02 mol
Number of moles of oxygen:
Number of moles = mass/molar mass
Number of moles = 31.98 g/ 32 g/mol
Number of moles = 1.0 mol
Now we will compare the moles of water with hydrogen and oxygen.
O₂ : H₂O
1 : 2
H₂ : H₂O
2 : 2
2.02 : 2.02
Number of moles of water formed by oxygen are less thus oxygen will limiting reactant.
Mass of water:
Mass = number of moles × molar mass
Mass = 2 mol × 18 g/mol
Mass = 36 g
Answer:
C. 26.4 kJ/mol
Explanation:
The Chen's rule for the calculation of heat of vaporization is shown below:
![\Delta H_v=RT_b\left [ \frac{3.974\left ( \frac{T_b}{T_c} \right )-3.958+1.555lnP_c}{1.07-\left ( \frac{T_b}{T_c} \right )} \right ]](https://tex.z-dn.net/?f=%5CDelta%20H_v%3DRT_b%5Cleft%20%5B%20%5Cfrac%7B3.974%5Cleft%20%28%20%5Cfrac%7BT_b%7D%7BT_c%7D%20%5Cright%20%29-3.958%2B1.555lnP_c%7D%7B1.07-%5Cleft%20%28%20%5Cfrac%7BT_b%7D%7BT_c%7D%20%5Cright%20%29%7D%20%5Cright%20%5D)
Where,
is the Heat of vaoprization (J/mol)
is the normal boiling point of the gas (K)
is the Critical temperature of the gas (K)
is the Critical pressure of the gas (bar)
R is the gas constant (8.314 J/Kmol)
For diethyl ether:



Applying the above equation to find heat of vaporization as:
![\Delta H_v=8.314\times307.4 \left [ \frac{3.974\left ( \frac{307.4}{466.7} \right )-3.958+1.555ln36.4}{1.07-\left ( \frac{307.4}{466.7} \right )} \right ]](https://tex.z-dn.net/?f=%5CDelta%20H_v%3D8.314%5Ctimes307.4%20%5Cleft%20%5B%20%5Cfrac%7B3.974%5Cleft%20%28%20%5Cfrac%7B307.4%7D%7B466.7%7D%20%5Cright%20%29-3.958%2B1.555ln36.4%7D%7B1.07-%5Cleft%20%28%20%5Cfrac%7B307.4%7D%7B466.7%7D%20%5Cright%20%29%7D%20%5Cright%20%5D)

The conversion of J into kJ is shown below:
1 J = 10⁻³ kJ
Thus,

<u>Option C is correct</u>
Answer:
Tyre
In cold weather, you might have regularly kept a check on the pressure of the tyres of your car. Driving increases the temperature of the tyres, and, therefore, the air inside the tyre warms and expands. When you measure the pressure of the tyres at the time when you have just driven the car, it will be high. However, in cold weather, the pressure of the tyres will be low. So, it is recommended that you should always measure the pressure of the tyres.