Answer:
The correct answer is an event occurring one or fewer times in 100 times if the null hypothesis is true.
Step-by-step explanation:
For a statistically rare event, its probability is relatively small and the event is very unlikely to occur. Therefore, if an experimental sets equal to 0.01 which is statistically rare, then we can interpret this mathematically as:
p(event) = 0.01 = 1/100
where p(event) is the probability of the event.
In addition, statistically, null hypothesis signifies no major difference between the specified parameters, and any obvious difference that might occur as a result of experimental error. Thus, it can be concluded that the event is occurring one or fewer times in 100 times if the null hypothesis is true.
Answer:
a) ![P[C]=p^n](https://tex.z-dn.net/?f=P%5BC%5D%3Dp%5En)
b) ![P[M]=p^{8n}(9-8p^n)](https://tex.z-dn.net/?f=P%5BM%5D%3Dp%5E%7B8n%7D%289-8p%5En%29)
c) n=62
d) n=138
Step-by-step explanation:
Note: "Each chip contains n transistors"
a) A chip needs all n transistor working to function correctly. If p is the probability that a transistor is working ok, then:
![P[C]=p^n](https://tex.z-dn.net/?f=P%5BC%5D%3Dp%5En)
b) The memory module works with when even one of the chips is defective. It means it works either if 8 chips or 9 chips are ok. The probability of the chips failing is independent of each other.
We can calculate this as a binomial distribution problem, with n=9 and k≥8:
![P[M]=P[C_9]+P[C_8]\\\\P[M]=\binom{9}{9}P[C]^9(1-P[C])^0+\binom{9}{8}P[C]^8(1-P[C])^1\\\\P[M]=P[C]^9+9P[C]^8(1-P[C])\\\\P[M]=p^{9n}+9p^{8n}(1-p^n)\\\\P[M]=p^{8n}(p^{n}+9(1-p^n))\\\\P[M]=p^{8n}(9-8p^n)](https://tex.z-dn.net/?f=P%5BM%5D%3DP%5BC_9%5D%2BP%5BC_8%5D%5C%5C%5C%5CP%5BM%5D%3D%5Cbinom%7B9%7D%7B9%7DP%5BC%5D%5E9%281-P%5BC%5D%29%5E0%2B%5Cbinom%7B9%7D%7B8%7DP%5BC%5D%5E8%281-P%5BC%5D%29%5E1%5C%5C%5C%5CP%5BM%5D%3DP%5BC%5D%5E9%2B9P%5BC%5D%5E8%281-P%5BC%5D%29%5C%5C%5C%5CP%5BM%5D%3Dp%5E%7B9n%7D%2B9p%5E%7B8n%7D%281-p%5En%29%5C%5C%5C%5CP%5BM%5D%3Dp%5E%7B8n%7D%28p%5E%7Bn%7D%2B9%281-p%5En%29%29%5C%5C%5C%5CP%5BM%5D%3Dp%5E%7B8n%7D%289-8p%5En%29)
c)
![P[M]=(0.999)^{8n}(9-8(0.999)^n)=0.9](https://tex.z-dn.net/?f=P%5BM%5D%3D%280.999%29%5E%7B8n%7D%289-8%280.999%29%5En%29%3D0.9)
This equation was solved graphically and the result is that the maximum number of chips to have a reliability of the memory module equal or bigger than 0.9 is 62 transistors per chip. See picture attached.
d) If the memoty module tolerates 2 defective chips:
![P[M]=P[C_9]+P[C_8]+P[C_7]\\\\P[M]=\binom{9}{9}P[C]^9(1-P[C])^0+\binom{9}{8}P[C]^8(1-P[C])^1+\binom{9}{7}P[C]^7(1-P[C])^2\\\\P[M]=P[C]^9+9P[C]^8(1-P[C])+36P[C]^7(1-P[C])^2\\\\P[M]=p^{9n}+9p^{8n}(1-p^n)+36p^{7n}(1-p^n)^2](https://tex.z-dn.net/?f=P%5BM%5D%3DP%5BC_9%5D%2BP%5BC_8%5D%2BP%5BC_7%5D%5C%5C%5C%5CP%5BM%5D%3D%5Cbinom%7B9%7D%7B9%7DP%5BC%5D%5E9%281-P%5BC%5D%29%5E0%2B%5Cbinom%7B9%7D%7B8%7DP%5BC%5D%5E8%281-P%5BC%5D%29%5E1%2B%5Cbinom%7B9%7D%7B7%7DP%5BC%5D%5E7%281-P%5BC%5D%29%5E2%5C%5C%5C%5CP%5BM%5D%3DP%5BC%5D%5E9%2B9P%5BC%5D%5E8%281-P%5BC%5D%29%2B36P%5BC%5D%5E7%281-P%5BC%5D%29%5E2%5C%5C%5C%5CP%5BM%5D%3Dp%5E%7B9n%7D%2B9p%5E%7B8n%7D%281-p%5En%29%2B36p%5E%7B7n%7D%281-p%5En%29%5E2)
We again calculate numerically and graphically and determine that the maximum number of transistor per chip in this conditions is n=138. See graph attached.
<h3>
Answer: 375</h3>
=========================================
Work Shown:
a = 300 = first term
r = 60/300 = 0.2 = common ratio
We multiply each term by 0.2, aka 1/5, to get the next term.
Since -1 < r < 1 is true, we can use the infinite geometric sum formula below
S = a/(1-r)
S = 300/(1-0.2)
S = 300/0.8
S = 375
----------
As a sort of "check", we can add up partial sums like so
- 300+60 = 360
- 300+60+12 = 360+12 = 372
- 300+60+12+2.4 = 372+2.4 = 374.4
- 300+60+12+2.4+0.48 = 374.4+0.48 = 374.88
and so on. The idea is that each time we add on a new term, we should be getting closer and closer to 375. I put "check" in quotation marks because it's probably not the rigorous of checks possible. But it may give a good idea of what's going on.
----------
Side note: If the common ratio r was either r < -1 or r > 1, then the terms we add on would get larger and larger. This would mean we don't approach a single finite value with the infinite sum.
Answer:
38 bb 2
Step-by-step explanation:
slimeeyyy
Answer:
An Algebraic Expression that models the situation is 
Step-by-step explanation:
Beginning balance of Jennifer=$4750
Now she deposits a paycheck = p
So, New balance = 4750+p
Now she writes a check = c
Remaining balance = 4750+p-c
Now she writes a check = d
Remaining balance = 4750+p-c-d
Now refunded some money (r) for returning a pair of shoes she bought.
New balance = 4750+p-c-d+r
Hence an Algebraic Expression that models the situation is 