Without an atmosphere, the equatorial curve would show minimum daily values on the solstices in June when the sub-solar point is located at 23.5°N and in December when the sub-solar point is at 23.5°S latitude.
Explanation:
At the sub-solar point, the sun strikes directly at the surface with an angle of 90 degrees at a given point.
Solistice refers to that point in time when the sun’s zenith is located at the farthest point from the equator.
During summer solistice on June 21, the sun’s zenith reaches northernmost point, sub-solar point is fixed at 23.5°S Tropic of Cancer making the earth tilt 23.4 degrees
During winter soliscitse on December 21, the sub-solar point is fixed at) Tropic of Capricorn.
Before answering this question, first we have to understand the effect of ratio of surface area to volume on the rate of diffusion.
The rate of diffusion for a body having larger surface area as compared to the ratio of surface area to volume will be more than a body having less surface area. Mathematically it can written as-
V∝ R [ where v is the rate of diffusion and r is the ratio of surface area to volume]
As per the question,the ratio of surface area to volume for a sphere is given 
The surface area to volume ratio for right circular cylinder is given 
Hence, it is obvious that the ratio is more for right circular cylinder.As the rate diffusion is directly proportional to the surface area to volume ratio,hence rate of diffusion will be more for right circular cylinder.
Hence the correct option is B. The rate of diffusion would be faster for the right cylinder.
C and D are units of length or distance.
A is a measured angle.
B is a unit of angular measurement.
Answer:
2 m/s^2, west
Explanation:
Vf=final velcoity
Vi=initial velocity
t=timw

=

= - 2 m/s^2
The - changes direction and makes it opposite
2 m/s, west