Answer:
Explanation:
a) Power consumption is 4100 J/min / 60 s/min = 68.3 W(atts)
work done raised the potential energy
b) 75(9.8)(1000) / (3(3600)) = 68.055555... 68.1 W
c) efficiency is 68.1 / 68.3 = 0.99593... or nearly 100%
Not a very likely scenario.
A.) Hertz is the measuring unit for frequency!!
[Your explanation is correct]
Hope this helps!
Answer:
3675 J
Explanation:
Gravitational Potential Energy =
× mass × g × height
( g is the gravitation field strength )
Mass = 50 kg
G = 9.8 N/kg ( this is always the same )
Height = 15 m
Gravitational Potential Energy =
× 50 ×9.8 × 15
= 3675 J
Answer:
3.75 MeV
Explanation:
The energy of the photon can be given in terms of frequency as:
E = h * f
Where h = Planck's constant
The frequency of the photon is 6 * 10^20 Hz.
The energy (in Joules) is:
E = 6.63 x10^(-34) * 6 * 10^(20)
E = 39.78 * 10^(-14) J = 3.978 * 10^(-13) J
We are given that:
1 eV = 1.06 * 10^(-19) Joules
This means that 1 Joule will be:
1 J = 1 / (1.06 * 10^(-19)
1 J = 9.434 * 10^(18) eV
=> 3.978 * 10^(-13) J = 3.978 * 10^(-13) * 9.434 * 10^(18) = 3.75 * 10^(6) eV
This is the same as 3.75 MeV.
The correct answer is not in the options, but the closest to it is option C.