Work = force x distance.
force = mass x acceleration
work = mass x acceleration x diastance
use acceleration of gravity in this problem
W (J) = m (kg) x a (m/s/s) x d (m)
W = 78 x 9.8 x 6
W = 4586.4
The ideal mechanical advantage of the screwdriver is 47
Explanation:
In this problem, the screwdriver acts as a lever.
The Ideal Mechanical Advantage (IMA) of a lever is given by:

where:
is the distance of the point of application of the input force from the fulcrum
is the distance of the output force from the fulcrum
In this problem, we have:
, since the fulcrum is 0.500 cm from the end
(the distance between the fulcrum and the point where are we holding the screwdriver)
Substutiting,

Learn more about levers here:
brainly.com/question/5352966
#LearnwithBrainly
Answer:
usually its because they dont wanna talk
Explanation:
I know what thats like. Either that or they don't trust you. It could be something personal or they just dont wanna talk. But i wouldn't push. Just let them talk if they want to
Answer:
1) A time-varying magnetic field will produce an electric field.
4) A time-varying electric field will produce a magnetic field.
Explanation:
1) A time-varying magnetic field will produce an electric field.
TRUE
time varying magnetic field will produce electric field which is given as

2) Time-varying electric and magnetic fields can propagate through space only if there is no matter in their path.
FALSE
Time varying electric field and magnetic field will induce each other and it can travel through any medium as well as it can travel without any medium also
3) Electric and magnetic fields can be treated independently only if they vary in time.
FALSE
electric field can be due to stationary charge and magnetic field due to current carrying elements so it is not compulsory to have time varying
4) A time-varying electric field will produce a magnetic field.
TRUE
Time varying electric field will produce magnetic field given as

Answer:
The temperature of the cooler substance was close to the room temperature. Therefore, the system experienced less change
Explanation:
Generally, in a closed system containing two bodies at different temperatures, there is a flow of heat energy from the body at a higher temperature to the body at a lower temperature. The effect is more significant when there is a large temperature difference between the bodies. However, if the temperature difference is small or insignificant, the change will be less.