Speed = (distance traveled) / (time to travel the distance).
Strange as it may seem, 'velocity' is completely different.
Velocity doesn't involve the total distance traveled at all.
Instead, 'velocity' is based on 'displacement' ... the distance
between the start-point and end-point, regardless of the route
taken to get there. So the displacement in driving once around
any closed path is zero, because you end up where you started.
Velocity =
(displacement during some time)
divided by
(time for the displacement)
AND the direction from the start-point to the end-point.
For the guy who drove 15 km to his destination in 10 min, and then
back to his starting point in 5 min, (assuming he returned by way of
the same 15-km route):
Speed = (15km + 15km) / (10min + 5min) = (30/15) (km/min)
= 2 km/min.
Velocity = (end location - start position) / (15 min) = Zero .
A force is a push or pull upon an object resulting from the object's interaction with another object.
An electromagnet is a device that sends electricity through a coil of wire to produce a magnetic field. This leads to a magnet that can be controlled - turned on and off with the flip of a switch, or increased or decreased in strength. The coils are often wrapped around a regular magnet to make it stronger.
<span>7.21 ft/s^2
Since you're looking for average acceleration, you can simply divide the change in velocity by the time. To make the calculation more reasonable, first convert the speed of 173 mi/h into ft/sec by multiplying by 5280 to convert from mi/h to ft/h and then dividing by 3600 to convert from ft/h to ft/s.
173 * 5280 / 3600 = 253.7333 ft/s
Now divide the change in velocity by the time in seconds.
253.7333 ft/s / 35.2 s = 7.208333 ft/s^2
Rounding result to 3 significant figures gives 7.21 ft/s^2</span>
Answer:
I think its a fuse because everything else makes sense and is used in electrical circuits and the fuse is the only one that stands out to me ¯\_(ツ)_/¯