1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sineoko [7]
2 years ago
15

A 2kg ball rotates on the end of a 1.4m long string. The ball makes 5 revolutions in 4.4s. What is the speed of the ball?

Physics
1 answer:
nlexa [21]2 years ago
3 0

The speed or the linear velocity of the stone is 9.93 m/s; option C

<h3>What is the speed or linear velocity of the stone?</h3>

The linear velocity of the stone is given by the formula below:

  • v = wr

where w is angular velocity and r is radius.

w = θ/t

1 complete revolution = 2π radians

5 revolutions = 10π radians

w =  10π/4.4 rad/s

v = 10π/4.4 rad/s * 1.4

v = 9.93 m/s

In conclusion, the linear velocity is obtained from the angular velocity and radius of the string.

Learn more about linear and angular velocity at: brainly.com/question/15154527

#SPJ1

You might be interested in
Which feature forms most of the ocean floor. describe it in detail
worty [1.4K]
Where plates are pulled away (diverge) from each other molten magma flows upward between the plates forming mid-ocean<span> ridges, underwater volcanoes, hydrothermal vents, and new </span>ocean floor<span> crust. The Mid-Atlantic Ridge, is an example of this type of plate boundary.</span>
3 0
3 years ago
The vector sum of the forces acting on the beam is zero, and the sum of the moments about the left end of the beam is zero. (a)
Marysya12 [62]

This question is incomplete, the complete question is;

The vector sum of the forces acting on the beam is zero, and the sum of the moments about the left end of the beam is zero.

(a) Determine the forces and and the couple

(b) Determine the sum of the moments about the right end of the beam.

(c) If you represent the 600-N force, the 200-N force, and the 30 N-m couple by a force F acting at the left end of the beam and a couple M, what is F and M?

Answer:

a)

the x-component of the force at A is A_{x} = 0

the y-component of the force at A is A_{y}  = 400 N

the couple acting at A is; M_{A} = 146 N-m

b)

the sum of the momentum about the right end of the beam is;  ∑M_{R}  = 0

c)

the equivalent force acting at the left end is; F = -400J ( N)

the couple acting at the left end is; M = - 146 N-m

Explanation:

Given that;

The sum of the forces acting on the beam is zero ∑f = 0

Sum of the moments about the left end of the beam is also zero ∑M_{L} = 0

Vector force acting at A, F_{A} = A_{x}i + A_{y}j

Now, From the image, we have;

a)

∑f = 0

F_{A} - 600j + 200j = 0i + 0j

A_{x}i + A_{y}j - 600j + 200j = 0i + 0j

A_{x}i + (A_{y} - 400)j = 0i + 0j

now by equating i- coefficients'

A_{x} = 0

so, the x-component of the force at A is A_{x} = 0

also by equating j-coefficient

A_{y} - 400 = 0

A_{y}  = 400 N

hence, the y-component of the force at A is A_{y}  = 400 N

we also have;

∑M_{L} = 0

M_{A}  - ( 30 N-m ) - ( 0.380 m )( 600 N ) + ( 0.560 m )( 200 N ) = 0

M_{A} - 30 N-m - 228 N-m + 112 Nm = 0

M_{A} - 146 N-m = 0

M_{A} = 146 N-m

Therefore, the couple acting at A is; M_{A} = 146 N-m

b)

The sum of the moments about right end of the beam is;

∑M_{R} = (0.180 m)(600N) - (30 N-m) - ( 0.56 m)(A_{y} ) + M_{A}

∑M_{R} = (108  N-m) - (30 N-m) - ( 0.56 m)(400 N ) + 146 N-m

∑M_{R} = (108 N-m) - (30 N-m) - ( 224 N-m ) + 146 N-m

∑M_{R}  = 0

Therefore, the sum of the momentum about the right end of the beam is;  ∑M_{R}  = 0

c)

The 600-N force, the 200-N force and the 30 N-m couple by a force F which is acting at the left end of the beam and a couple M.

The equivalent force at the left end will be;

F = -600j + 200j (N)

F = -400J ( N)

Therefore, the equivalent force acting at the left end is; F = -400J ( N)

Also couple acting at the left end

M = -(30 N-m) + (0.560 m)( 200N) - ( 0.380 m)( 600 N)

M = -(30 N-m) + (112 N-m) - ( 228 N-m))

M = 112 N-m - 258 N-m

M = - 146 N-m

Therefore, the couple acting at the left end is; M = - 146 N-m

7 0
2 years ago
Give a combination of four quantum numbers that could be assigned to an electron occupying a 5p orbital.
Elden [556K]

Answer:

n=5, l=1, m(l) = -1, m(s)= + 1/2

Explanation:

Quantum number are used to describe the position and spin of an electron inside an atom. There are four types of quantum number for describing an electron inside an atom. They are: the principal quantum number, spin quantum number, magnetic quantum number and angular momentum quantum number.

(1).PRINCIPAL QUANTUM NUMBER: denoted by n, and has possible values of n= 1,2,3,4,.... IN HERE, n= 5

(2).ANGULAR MOMENTUM QUANTUM NUMBER: it is denoted by l, and has possible values of l= 0,1,2,3,...,(n-1).

Our l here is one( that is, s-orbital=0, p-orbital=1, d-orbital= 3 and so on)

(3).MAGNETIC QUANTUM NUMBER: The magnetic quantum number, which is denoted by m subscribt l, specifies the exact orbital in which you can find the electron. It has values ranging from -l,...,-1,0,1,...,l.

Here, our value is -1 that is m(l)= -1

(4).SPIN QUANTUM NUMBER: describes the orientation of electrons. Electrons can only have two values here, either a positive one and the half(+1/2) that is the spin up electron or the negative one and half(-1/2) that is the spin down electron.

8 0
4 years ago
Which is an example of a physical change
mote1985 [20]
Water boiling is an example of a physical change. The rest are chemical changes.  
Hope that helps!!
6 0
3 years ago
Starting at 1.0 m/s, a cheetah runs with a constant acceleration for 4.8 s reaching a speed of 28 m/s. What is the acceleration
LenaWriter [7]

Answer:

c.5.6m/s^2

Explanation:

Initial velocity of cheetah,u=1 m/s

Time taken by cheetah =4.8 s

Final velocity of cheetah,v=28 m/s

We have to find the acceleration of this cheetah.

We know that

Acceleration,a=\frac{v-u}{t}

Where v=Final velocity of object

u=Initial velocity of object

t=Time taken by object

Using the formula

Then, we get

Acceleration, a=\frac{28-1}{4.8}=\frac{27}{4.8} m/s^2

Acceleration=a=5.6 m/s^2

Hence, the acceleration of cheetah=5.6m/s^2

5 0
3 years ago
Other questions:
  • Three different planet-star systems, which are far apart from one another, are shown above. The masses of the planets are much l
    15·1 answer
  • Resistance of rod is 1 ohm. It is bent in the form of square. The resistance across adjoint corners is.​
    10·1 answer
  • Why are magnetic fields evidence of sea floor spreading
    13·1 answer
  • Wave motion is characterized by two velocities: the velocity with which the wave moves in the medium (e.g., air or a string) and
    12·1 answer
  • Why can the Hubble space telescope make very detailed images in visible light
    5·1 answer
  • wink is the seismic station closest to the earthquake. describe two evidences from the seismogram that demonstrates this?
    14·1 answer
  • A.
    13·1 answer
  • What is used to measure the amount of sunshine ​
    12·2 answers
  • Help me with both questions please?
    8·1 answer
  • Answer this question fast please i will mark you brainliest​
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!