Answer:
5.25 m
Explanation:
Given;
The height equation h;
h=-x^2+3x+3
Where;
h = the height above water
x = horizontal distance from the end of the board
The maximum height is at h' = 0, when change in h with respect to change in x is equal to zero.
differentiating the equation h.
dh/dx = h' = -2x + 3 = 0
Solving for x;
2x = 3
x = 3/2
Substituting into the function h;
h max = -x^2+3x+3
h max = -(3/2)^2 + 3(3/2) +3 = -9/4 +9/2 +3 = 9/4 + 3 =
h max = 21/4 = 5.25 m
To solve the problem it is necessary to apply the Malus Law. Malus's law indicates that the intensity of a linearly polarized beam of light, which passes through a perfect analyzer with a vertical optical axis is equivalent to:

Where,
indicates the intensity of the light before passing through the polarizer,
I is the resulting intensity, and
indicates the angle between the axis of the analyzer and the polarization axis of the incident light.
Since we have two objects the law would be,

Replacing the values,



Therefore the intesity of the light after it has passes through both polarizers is 
Answer:
1) The matter absorbs or reflects the light
2) Lens
3) <u><em>Concave</em></u>- curves inwards. Diverges light
b.<u><em>Convex</em></u>- curves outward. Converges light
4) The image is real if the distance of the object from the lens is greater than the focal length and virtual if it is less than the focal length
5) Lens and, for convex lenses, on the distance between the lens and the object.
6) Index of refraction?
Explanation:
I hope this helped you, sorry if anything is wrong
Answer:
Stress = 4.67 * 10^-7 N/m²
Explanation:
Young's modulus of the material = Stress/Strain
Given
Young's modulus = 228 x 10^9 Pa
Stress = 106,483 Pa
Required
Strain
From the formula;
Strain = Stress/Young modulus
Strain = 106,483 /228 x 10^9
Stress = 4.67 * 10^-7 N/m²
Answer:
They can use it for when they are dormant in the winter or to grow more sources for storing and creating energy, or they store the energy (this energy would be considered stored energy).