Answer:

Explanation:
The stoichiometry for this reaction is

The rate for this reaction can be written as
![-r_{NO_2}=-\frac{d\left[NO_2\right]}{dt}=\frac{(0.01-0.008)M}{100s}=2\times{10}^{-5}\frac{M}{s}](https://tex.z-dn.net/?f=-r_%7BNO_2%7D%3D-%5Cfrac%7Bd%5Cleft%5BNO_2%5Cright%5D%7D%7Bdt%7D%3D%5Cfrac%7B%280.01-0.008%29M%7D%7B100s%7D%3D2%5Ctimes%7B10%7D%5E%7B-5%7D%5Cfrac%7BM%7D%7Bs%7D)
This rate of disappearence of
can be realated to the rate of appearence of
as follows (the coefficients of each compound are defined by the stoichiometry of the reaction)

Air Pressure drops more rapidly with altitude in a column of cold air than in warm air.The answers to this question are cold air and warm air, respectively.
<span>Cold air is known to be dense while warm air is known otherwise to be less thens which makes it move upwards. Cold air experiences more pressure as it moves upwards.</span>
<span>Every atom and molecule has its own chemical potential energy value since atoms and molecules are attracted to each other. Whenever atoms and molecules form ionic or covalent bonds, their individual potential energies are converted into heat or light energy. The heat or light energy is released as the bonds form. Atoms that form strong bonds have lower potential chemical energy levels and release little heat or light, while atoms that form weak bonds have higher potential chemical energy levels and release a lot of heat or light during the formation of chemical bonds.
</span>
Heres the answer to the rest of that paper as well