Answer:
0.22
Explanation:
Given, Mass of
= 46.85 g
Molar mass of
= 299.4 g/mol
The formula for the calculation of moles is shown below:
Thus,
Given, Mass of
= 125.5 g
Molar mass of
= 46.07 g/mol
The formula for the calculation of moles is shown below:
Thus,
So, according to definition of mole fraction:

Answer:
<h2>The answer is 1.45 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass of seawater = 250 g
volume = 173 mL
It's density is

We have the final answer as
<h3>1.45 g/mL</h3>
Hope this helps you
Answer:
0.200 m K3PO3
Explanation:
Let us remember that the freezing point depression is obtained from the formula;
ΔTf = Kf m i
Where;
Kf = freezing point constant
m = molality
i = Van't Hoff factor
The Van't Hoff factor has to do with the number of particles in solution. Let us consider the Van't Hoff factor for each specie.
0.200 m HOCH2CH2OH - 1
0.200 m Ba(NO3)2 - 3
0.200 m K3PO3 - 4
0.200 m Ca(CIO4)2 - 3
Hence, 0.200 m K3PO3 has the greatest van't Hoff factor and consequently the greatest freezing point depression.
Assuming the conditions of the reaction are maintained and appropriate for the reaction to still occur, the reaction rate can be affected by increasing the concentration of the reagents used in a reaction. It will speed it up.