Answer:
He used Velocity and Radius.
Explanation:
The uncertainty truths contradicts Bohr's thoughts of electrons.
Answer:
The rate of disappearance of C₂H₆O = 2.46 mol/min
Explanation:
The equation of the reaction is given below:
2 K₂Cr₂O₇ + 8 H₂SO₄ + 3 C₂H₆O → 2 Cr₂(SO₄)₃ + 2 K₂SO₄ + 11 H₂O
From the equation of the reaction, 3 moles of C₂H₆O is used when 2 moles of Cr₂(SO₄)₃ are produced, therefore, the mole ratio of C₂H₆O to Cr₂(SO₄)₃ is 3:2.
The rate of appearance of Cr₂(SO₄)₃ in that particular moment is given 1.64 mol/min. This would than means that C₂H₆O must be used up at a rate which is approximately equal to their mole ratios. Thus, the rate of of the disappearance of C₂H₆O can be calculated from the mole ratio of Cr₂(SO₄)₃ and C₂H₆O.
Rate of disappearance of C₂H₆O = 1.64 mol/min of Cr₂(SO₄)₃ * 3 moles of C₂H₆O / 2 moles of Cr₂(SO₄)₃
Rate of disappearance of C₂H₆O = 2.46 mol/min of C₂H₆O
Therefore, the rate of disappearance of C₂H₆O = 2.46 mol/min
Answer:
NiO Does Not Dissolve In An Aqueous Solution Of NaNO3.
Explanation:
<span>The gaseous mixture contains 414.0 torr of h2(g), 345.7 torr of n2(g), and 80.1 torr of ar(g). Then, total pressure of the gas would be: 414 torr + 345.7 torr + 80.1 torr= 839.8 torr
The mole fraction of each gas:
H2= 414 torr/</span>839.8 torr= 0.49
N2= 345.7 torr/839.8 torr= 0.41
Ar= 80.1 torr/839.8 torr= 0.10