Answer:
5.5 atm
Explanation:
Step 1: Calculate the moles in 2.0 L of oxygen at STP
At STP, 1 mole of an ideal gas occupies 22.4 L.
2.0 L × 1 mol/22.4 L = 0.089 mol
Step 2: Calculate the moles in 8.0 L of nitrogen at STP
At STP, 1 mole of an ideal gas occupies 22.4 L.
8.0 L × 1 mol/22.4 L = 0.36 mol
Step 3: Calculate the total number of moles of the mixture
n = 0.089 mol + 0.36 mol = 0.45 mol
Step 4: Calculate the pressure exerted by the mixture
We will use the ideal gas equation.
P × V = n × R × T
P = n × R × T / V
P = 0.45 mol × (0.0821 atm.L/mol.K) × 298 K / 2.0 L = 5.5 atm
Answer:

Explanation:
The volume and amount are constant, so we can use Gay-Lussac’s Law:
At constant volume, the pressure exerted by a gas is directly proportional to its temperature.

Data:
p₁ = 1520 Torr; T₁ = 27 °C
p₂ = ?; T₂ = 150 °C
Calculations:
(a) Convert the temperatures to kelvins
T₁ = ( 27 + 273.15) K = 300.15 K
T₂ = (150 + 273.15) K = 423.15 K
(b) Calculate the new pressure

(c) Convert the pressure to atmospheres

Answer:
The molarity of methylene blue is 1.5 × 10⁻⁵ M
Explanation:
When we talk about aqueous solutions, 1 ppm means 1 mg of solute per liter of solution. We need to express this concentration in molarity, which is moles of solute per liter of solution. To convert mass to moles we need the molar mass of methylene blue(MB), which is 320 g/mol.
Then,
