There are two types of mechanical waves:
longitudinal waves : Their displacement is in a direction perpendicular to the vibrations of the wave forming crests and troughs.
Transverse waves : They have the vibrations in the direction of the wave forming compressions and rarefactions.
Answer:
(e) thermal expansion
Explanation:
The density, the heat of fusion and the melting temperature of the metal are determining characteristics to take into account to raise the temperature of the metal from room temperature to the melting temperature. Since they will determine the following:
Density: is the relationship between the mass of a body and the volume it occupies in outer space.
Heat of fusion: The enthalpy of fusion or heat of fusion is the amount of energy needed to make a mole of an element that is at its melting point pass from the solid state to the liquid, at constant pressure.
Melting temperature is defined as the temperature at which the phase transition from the solid state to the liquid occurs at normal atmospheric pressure.
While the dilution of metals will only have an influence on the volume it will occupy but not on the heating process
In collision that are categorized as elastic, the total kinetic energy of the system is preserved such that,
KE1 = KE2
The kinetic energy of the system before the collision is solved below.
KE1 = (0.5)(25)(20)² + (0.5)(10g)(15)²
KE1 = 6125 g cm²/s²
This value should also be equal to KE2, which can be calculated using the conditions after the collision.
KE2 = 6125 g cm²/s² = (0.5)(10)(22.1)² + (0.5)(25)(x²)
The value of x from the equation is 17.16 cm/s.
Hence, the answer is 17.16 cm/s.
Answer:
1.6 ft/min
Explanation:
Since trough is 10 ft long and water is filled at the rate of 12ft3/min. We can calculate the rate of water filled with respect to area:
= 12 / 10 = 1.2ft2/min
As the water level rises, so does the water surface, or the bottom side of the isosceles triangles. In fact we can calculate the bottom side when the trough is half foot deep:
= 3 / 2 = 1.5 ft
The rate of change in water level would be the same as calculating the height of the isosceles triangles knowing its base
= 1.2 * 2 / 1.5 = 1.6 ft/min
<h2>a) Average velocity in first 4 seconds is 64 ft/s upward</h2><h2>b) Average velocity in second 4 seconds is 63.5 ft/s downward</h2>
Explanation:
a) Given S(t) = 76 + 128t − 16t²
s(0) = 76 + 128 x 0 − 16 x 0² = 76 ft
s(4) = 76 + 128 x 4 − 16 x 4² = 332 ft
Displacement in 4 seconds = 332 - 76 = 256 ft
Time = 4 - 0 = 4 s

Average velocity in first 4 seconds is 64 ft/s upward
a) Given S(t) = 76 + 128t − 16t²
s(4) = 76 + 128 x 4 − 16 x 4² = 332 ft
s(8) = 76 + 128 x 8 − 16 x 8² = 78 ft
Displacement in 4 seconds = 78 - 332 = -254 ft
Time = 4 - 0 = 4 s

Average velocity in second 4 seconds is 63.5 ft/s downward