Answer:
The free end of the blade has a tangential velocity of about 88.19 m/s
Explanation:
The angular velocity of the blades is 
since the blades are 80 m long, then the tangential velocity of the free end of the blade is:

Answer:
(A) V = 9.89m/s
(B) U = -2.50m/s
(C) ΔK.E = –377047J
(D) ΔK.E = –257750J
Explanation:
The full solution can be found in the attachment below. The east has been chosen as the direction for positivity.
This problem involves the principle of momentum conservation. This principle states that the total momentum before collision is equal to the total momentum after collision. This problem is an inelastic kind of collision for which the momentum is conserved but the kinetic energy is not. The kinetic energy after collision is always lesser than that before collision. The balance is converted into heat by friction, and also sound energy.
See attachment below for full solution.
We Know, K.E. = 1/2 × m × v²
From the expression, we can conclude that Kinetic energy is directly proportional to mass. So, as mass will increase, Kinetic energy will also increase.
In short, Your Correct answer would be Option B
Hope this helps!
Answer:
the magnitude of first force = 3 × 5= 15 N
ANd, the magnitude of second force = 5 × 5 = 25 N
Explanation:
The computation of the magnitude of the each force is shown below:
Provided that
Ratio of forces = 3: 5
Let us assume the common factor is x
Now
first force = 3x
And, the second force = 5x
Resultant force = 35 N
The Angle between the forces = 60 degrees
Based on the above information
Resultant force i.e. F = √ F_1^2 +F_2^2 + 2 F_1F_2cos
35 = √[(3x)²+ (5x)²+ 2 (3x)(5x) cos 60°]
35 =√ 9x² + 25x² + 15x² (cos 60° = 0.5)
35 = √49 x²
x = 5
So, the magnitude of first force = 3 × 5= 15 N
ANd, the magnitude of second force = 5 × 5 = 25 N