1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergio039 [100]
2 years ago
7

A 5.0 kg box slides down a 4.0 m long ramp that makes a 25 angle with the ground. If the coefficient of kinetic friction is 0.65

, how much thermal energy was produced?
Physics
1 answer:
Sedaia [141]2 years ago
4 0

The thermal energy was produced is 116J

<h3>What is the thermal energy produced?</h3>

Now we know that the frictional force produces the energy that is lost as heat as the body slides down the incline. The magnitude of the frictional force is obtained from;

Ff= μmgcosθ

Ff =  0.65 *  5.0 kg * 9.8 m/s^2 * cos 25

Ff = 29 N

Hence, the thermal energy is;

29 N * 4.0 m = 116J

Learn more about frictional force:brainly.com/question/1714663

#SPJ1

You might be interested in
Ideal mechanical advantage is equal to the displacement of the effort force divided by the displacement of the load.
ELEN [110]
This would be false. hope this helps. good luck :)
3 0
3 years ago
What human disease can result from exposure to ultraviolet radiation from the sun?
aev [14]
Melanoma skin cancer
8 0
4 years ago
Read 2 more answers
When illustrating relative dating by
Rainbow [258]

Answer:

A The Bottom

Explanation:

Brainlist Tho??

8 0
3 years ago
A rocket is launched at an angle of 53.0° above the horizontal with an initial speed of 103 m/s. The rocket moves for 3.00 s alo
Serggg [28]

Before the engines fail (0\le t\le3.00\,\rm s), the rocket's horizontal and vertical position in the air are

x=\left(103\,\frac{\rm m}{\rm s}\right)\cos53.0^\circ\,t+\dfrac12\left(32.0\,\frac{\rm m}{\mathrm s^2}\right)\cos53.0^\circ t^2

y=\left(103\,\frac{\rm m}{\rm s}\right)\sin53.0^\circ\,t+\dfrac12\left(32.0\,\frac{\rm m}{\mathrm s^2}\right)\sin53.0^\circ t^2

and its velocity vector has components

v_x=\left(103\,\frac{\rm m}{\rm s}\right)\cos53.0^\circ+\left(32.0\,\frac{\rm m}{\mathrm s^2}\right)\cos53.0^\circ t

v_y=\left(103\,\frac{\rm m}{\rm s}\right)\sin53.0^\circ+\left(32.0\,\frac{\rm m}{\mathrm s^2}\right)\sin53.0^\circ t

After t=3.00\,\rm s, its position is

x=273\,\rm m

y=362\,\rm m

and the rocket's velocity vector has horizontal and vertical components

v_x=120\,\frac{\rm m}{\rm s}

v_y=159\,\frac{\rm m}{\rm s}

After the engine failure (t>3.00\,\rm s), the rocket is in freefall and its position is given by

x=273\,\mathrm m+\left(120\,\frac{\rm m}{\rm s}\right)t

y=362\,\mathrm m+\left(159\,\frac{\rm m}{\rm s}\right)t-\dfrac g2t^2

and its velocity vector's components are

v_x=120\,\frac{\rm m}{\rm s}

v_y=159\,\frac{\rm m}{\rm s}-gt

where we take g=9.80\,\frac{\rm m}{\mathrm s^2}.

a. The maximum altitude occurs at the point during which v_y=0:

159\,\frac{\rm m}{\rm s}-gt=0\implies t=16.2\,\rm s

At this point, the rocket has an altitude of

362\,\mathrm m+\left(159\,\frac{\rm m}{\rm s}\right)(16.2\,\rm s)-\dfrac g2(16.2\,\rm s)^2=1650\,\rm m

b. The rocket will eventually fall to the ground at some point after its engines fail. We solve y=0 for t, then add 3 seconds to this time:

362\,\mathrm m+\left(159\,\frac{\rm m}{\rm s}\right)t-\dfrac g2t^2=0\implies t=34.6\,\rm s

So the rocket stays in the air for a total of 37.6\,\rm s.

c. After the engine failure, the rocket traveled for about 34.6 seconds, so we evalute x for this time t:

273\,\mathrm m+\left(120\,\frac{\rm m}{\rm s}\right)(34.6\,\rm s)=4410\,\rm m

5 0
3 years ago
Now find the components NxNxN_x and NyNyN_y of N⃗ N→N_vec in the tilted coordinate system of Part B. Express your answer in term
MArishka [77]

Answer:

N_{y} =NcosФ,

N_{x} =-Nsin Ф

Explanation:

Now find the components NxNxN_x and NyNyN_y of N⃗ N→N_vec in the tilted coordinate system of Part B. Express your answer in terms of the length of the vector NNN and the angle θθtheta, with the components separated by a comma.

Vectors are quantities that  have both magnitude and direction while scalar quantities have only magnitude but no direction.

This a vector quantity

from the diagram the horizontal component of the length of the vector will be

N_{y} =NcosФ

the vertical component will be

N_{x} =-Nsin Ф

this is in the opposite direction because the x can be extrapolated to the negative axis

7 0
3 years ago
Read 2 more answers
Other questions:
  • What are the four basic perceptual characteristics of sound?
    13·2 answers
  • An electron of mass 9.11 1031 kg has an initial speed of 3.00 105 m/s. It travels in a straight line, and its speed increases to
    15·1 answer
  • Consider the diver and the board. Which object exerts the action force?
    5·2 answers
  • A storm is moving at 15 km/hr what to do to determine its velocity
    9·1 answer
  • How are density and pressure related related to each other?
    13·1 answer
  • Why does a ball accelerate as it rolls down a hill?
    14·2 answers
  • PLEASE HELP BRAINLIEST + POINTS'
    15·1 answer
  • Some snakes have special sensory organs that detect the infrared region of the electromagnetic spectrum. Compared with human vis
    10·2 answers
  • What is the mass of an object travelling at 25 m/s with a kinetic energy of 3775 J?
    14·1 answer
  • A skater is spinning with his arms outstretched. He has a 2 lb weight in each hand. In an attempt to change his angular velocity
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!