The initial velocity of the ball is 1.01 m/s
Explanation:
The motion of the ball rolling off the desk is a projectile motion, which consists of two independent motions:
- A uniform horizontal motion with constant horizontal velocity
- A vertical accelerated motion with constant acceleration (
, acceleration due to gravity)
We start by analyzing the vertical motion: we can find the time of flight of the ball by using the following suvat equation

where
s = 1.20 m is the vertical displacement (the height of the desk)
u = 0 is the initial vertical velocity

t is the time of flight
Solving for t,

Now we analyze the horizontal motion. We know that the ball covers a horizontal distance of
d = 0.50 m
in a time
t = 0.495 s
Therefore, since the horizontal velocity is constant, we can calculate it as

So, the ball rolls off the table at 1.01 m/s.
Learn more about projectile motion:
brainly.com/question/8751410
#LearnwithBrainly
Answer:
The volume of the balloon increases in the upper atmosphere.
Explanation:
p1= 1 atm
p2= 0.15 atm
V1= 15.6 L
V2= ?
p1*V1= p2 * V2
V2= (p1/p2)*V1
V2= 104 L
Answer:
So, at the depth of 24 cm below the surface of the glycerine the pressure is 2970 Pa. Hence, this is the required solution.
Explanation:
Given that,
Pressure exerted by the surface of glycerine, P = 2970 Pa and it is greater than atmospheric pressure.
The density of glycerine,
We need to find the depth h below the surface of the glycerine. The pressure due to some depth is given by :
h = 0.24 meters
or
h = 24 cm
Person A has more muscular strength then person B. B has muscular endurance.