Answer:
(orbital speed of the satellite) V₀ = 3.818 km
Time (t) = 4.5 × 10⁴s
Explanation:
Given that:
The radius of the Earth is 6.37 × 10⁶ m; &
the acceleration of gravity at the satellite’s altitude is 0.532655 m/s
We can calculate the orbital speed of the satellite by using the formula:
Orbital Speed (V₀) = √(r × g)
radius of the orbit (r) = 21000 km + 6.37 × 10⁶ m
= (2.1 × 10⁷ + 6.37 × 10⁶) m
= 27370000
= 2.737 × 10⁷m
Orbital Speed (V₀) = √(r × g)
Orbital Speed (V₀) = √(2.737 × 10⁷ × 0.532655 )
= 3818.215
= 3.818 × 10³
= 3.818 Km
To find the time it takes to complete one orbit around the Earth; we use the formula:
Time (t) = 2 π × 
= 2 × 3.14 × 
= 45019.28
= 4.5 × 10 ⁴ s
To get a uniform field in the central region between the coils, current flows in the same direction in each.
final velocity = initial
velocity + (acceleration x time) <span>
3.9 m/s = 0 m/s + (acceleration x 0.11 s)
3.9 m/s / 0.11 s = acceleration
30.45 m/s^2 = acceleration
distance = (initial velocity x time) +
1/2(acceleration)(time^2)
distance (0 m/s x 0.11 s) + 1/2(30.45 m/s^2)(0.11s ^2)
<span>distance = 0.18 m</span></span>
The answer is number 2 stomata.