They are held through electrons
Answer:
Hey
Your answer would be D (Aristotle stated that heavy objects fall faster than light objects). He thought be comparing a feather falling to a rock falling that you could see that heavier objects fall faster than light ones. of course now we know that all objects fall at the same speed and that weight does not affect that. only air drag affects how fast objects fall.
Answer:
E = 389 MeV
Explanation:
The total energy of particle A, will be equal to the sum of rest mass energy and relative energy of particle A. Therefore,
Total Energy of A = E = Rest Mass Energy + Relative Energy
Using Einstein's Equation: E = mc²
E = m₀c² + mc²
From Einstein's Special Theory of Relativity, we know that:
m = m₀/[√(1-v²/c²)]
Therefore,
E = m₀c² + m₀c²/[√(1-v²/c²)]
E = m₀c²[1 + 1/√(1-v²/c²)]
where,
m₀c² = rest mass energy = 140 MeV
v = relative speed = 0.827 c
Therefore,
E = (140 MeV)[1 + 1/√(1 - (0.827c)²/c²)]
E = (140 MeV)(2.78)
<u>E = 389 MeV</u>
In a reversible reaction, both forward and reverse directions of the reaction generally occur at the same time. While reactants are reacting to produce products, products are reacting to produce reactants. Often, a point is reached at which forward and reverse directions of the reaction occur at the same rate.