<span>Hydrocarbons are molecules that contain only carbon and hydrogen.</span>
Due to carbon's unique bonding patterns, hydrocarbons can have single, double, or triple bonds between the carbon atoms.
The names of hydrocarbons with single bonds end in "-ane," those
with double bonds end in "-ene," and those with triple bonds end in
"-yne".
The bonding of hydrocarbons allows them to form rings or chains.
Answer:
5N
Explanation
convert grams to kg and multipy with 10 (.5 *10)=5N
Answer:
Neither.
Explanation:
When an electron is released from rest, in an uniform electric field, it will accelerate moving in a direction opposite to the field (as the field has the direction that it would take a positive test charge, and the electron carries a negative charge).
It will move towards a point with a higher potential, so its kinetic energy will increase, while its potential energy will decrease:
⇒ ΔK + ΔU = 0 ⇒ ΔK = -ΔU = - (-e*ΔV)
As ΔV>0, we conclude that the electric potential energy decreases while the kinetic energy increases in the same proportion, in order to energy be conserved, in absence of non-conservative forces.
<span>Answer:
The moments of inertia are listed on p. 223, and a uniform cylinder through its center is:
I = 1/2mr2
so
I = 1/2(4.80 kg)(.0710 m)2 = 0.0120984 kgm2
Since there is a frictional torque of 1.20 Nm, we can use the angular equivalent of F = ma to find the angular deceleration:
t = Ia
-1.20 Nm = (0.0120984 kgm2)a
a = -99.19 rad/s/s
Now we have a kinematics question to solve:
wo = (10,000 Revolutions/Minute)(2p radians/revolution)(1 minute/60 sec) = 1047.2 rad/s
w = 0
a = -99.19 rad/s/s
Let's find the time first:
w = wo + at : wo = 1047.2 rad/s; w = 0 rad/s; a = -99.19 rad/s/s
t = 10.558 s = 10.6 s
And the displacement (Angular)
Now the formula I want to use is only in the formula packet in its linear form, but it works just as well in angular form
s = (u+v)t/2
Which is
q = (wo+w)t/2 : wo = 1047.2 rad/s; w = 0 rad/s; t = 10.558 s
q = (125.7 rad/s+418.9 rad/s)(3.5 s)/2 = 952.9 radians
But the problem wanted revolutions, so let's change the units:
q = (5528.075087 radians)(revolution/2p radians) = 880. revolutions</span>