Answer:
a) n2=(n1sin1)(sin2)
b) 1.18
c) 201081632.7m/s
d) 254237288.1m/s
Explanation:
a) We can calculate the index of refraction of the second material by using the Snell's law:
b) By replacing in the equation of a) we obtain:
c) light velocity in the medium is given by:
d)
hope this helps!!
Answer:
0.7 kg m²
Explanation:
F = force exerted applied by muscle in a professional boxer = 2551 N
r = length of lever arm = 3.15 cm = 0.0315 m
α = angular acceleration of the forearm = 115 rad/s²
I = moment of inertia of the boxer's forearm
τ = Torque applied by muscle in a professional boxer
Torque is given as
τ = I α = r F
Inserting the values
I (115) = (0.0315) (2551)
I = 0.7 kg m²
Answer:
The tension in string is found to be 188.06 N
Explanation:
For the vibrating string the fundamental frequency is given as:
f1 = v/2L
where,
f1 = fundamental frequency = 335 Hz
v = speed of wave
L = length of string = 28.5 cm = 0.285 m
Therefore,
v = f1 2L
v = (335 Hz)(2)(0.285)
v = 190.95 m/s
Now, for the tension:
v = √T/μ
v² = T/μ
T = v² μ
where,
T = Tension
v = speed = 190.95 m/s
μ = linear mass density of string = mass/L = 0.00147 kg/0.285 m = 5.15 x 10^-3 kg/m
Therefore,
T = (190.95 m/s)²(5.15 x 10^-3 kg/m)
<u>T = 188.06 N</u>
The correct answer for this question is this one: "C. Neither Natalie nor Will." Natalie and Will are discussing socialization. Natalie says that socialization occurs when an animal becomes accustomed to the people in the household. <span>Will says that socialization is easily attained if the animal is first exposed to humans after 12 weeks of age.</span>
Well according to Newton’s first law of motion, a body will remain in the state of rest or linear motion provided that an *external force* has been applied. So no, a force doesn’t need to keep a body to remain in linear motion, because F=ma, during uniform linear motion velocity is constant, hence acceleration is zero, so F=0