Frictional force and Applied force has same “magnitude” and “opposite” direction.
Option: B
<u>Explanation</u>:
When a book is moved horizontally by applying “force” on the book, the frictional force is opposed to the book by the table. Here, this “frictional force” is opposing the book has the same force what we applied on the book but this frictional force and the applied force are opposite in direction. Always the “frictional force” is opposite to the “applied force” which stops the object to move. For example, if a force applied leftward to the object the frictional force is acted on the right side of the object.
When two objects are in contact they experience a "frictional force". This "frictional force" acts opposite to the force applied on to move the object.
Formula for "frictional force" is 
Where,
is coefficient of friction and N is normal force.
Answer:
Explanation:
Check attachment for solution
Answer:
The people with caculators will probably answer faster due to thier ablitiy to use a device of technology
Answer: v = 880m/s
Explanation: The length of a string is related to the wavelength of sound passing through the string at the fundamental frequency is given as
L = λ/2 where L = length of string and λ = wavelength.
But L = 1m
1 = λ/2
λ = 2m.
But the frequency at fundamental is 440Hz and
V = fλ
Hence
v = 440 * 2
v = 880m/s
Answer:
a) t = 1.47 h b) t = 1.32 h
Explanation:
a) In this problem the plane and the wind are in the same North-South direction, whereby the vector sum is reduced to the scalar sum (ordinary). Let's calculate the total speed
v =
f -
v = 585 -32.1
v = 552.9 km / h
We use the speed ratio in uniform motion
v = x / t
t = x / v
t = 815 /552.9
t = 1.47 h
b) We repeat the calculation, but this time the wind is going in the direction of the plane
v=
f -
v 585 + 32.1
v = 617.1 km / h
t = 815 /617.1
t = 1.32 h