The nickel, itself ferromagnetic, reduces the magnetism in stainless steel but not to zero. Austenitic stainless steel is defined as the steel crystal structure that is face centered cubic which is the same structure hot iron has as one of the allotropes of iron. Nickel above a certain percentage (18) stabilizes austenite structure just as if you took carbon steel and heated it above 730–770 C. Above this temperature the structure is FCC and above the Currie temperature where magnetism is killed due to the isotopic symmetry of the structure. However, you can still get a small magnetic attraction from austenitic stainless steel if it is cold worked, heat treated a certain way or welded. So it is not a guarantee that austenitic stainless is totally non magnetic.
Answer
Manual samplers are prone to effects of temperature, speed of wind and air concentrations.
Explanation
Manual samplers face several challenges that can act as drawbacks to obtaining accurate results. They are subjected to effects of sampling duration where long sampling times are needed to obtain adequate mass for detection. Manual samplers face challenges when measuring non-volatile species because particles are observed into the adsorption medium at a slower rate of diffusion.
Answer : The final temperature of the mixture is 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of iron = 
= specific heat of water = 
= mass of iron = 39.9 g
= mass of water = 
= final temperature of mixture = ?
= initial temperature of iron = 
= initial temperature of water = 
Now put all the given values in the above formula, we get


Therefore, the final temperature of the mixture is 
Answer:
Active transport by the Na+-K+ pump
Explanation:
Active transport by the Na+-K+ pump
Maintenance (and restoration) of the resting ion concentrations depends on the Na+-K+ pump. Once gated ion channels are closed, the combined action of the pump and ion leakage (particularly that of K+) establishes a resting membrane potential in a typical neuron of around âˆ'70 mV.