1) Conversion of an isotope one chemical element or an isotope into another chemical element is called as nuclear transmutation.
<span>
2) In a nuclear transmutation reactions</span> can be achieved either due to radioactive decay or due to nuclear reactions.
3) In this technique, it is possible to convert a stable element into radioactive atom by bombarding in with high speed particles. The initial stable nuclei is referred as parent nuclei, the fast moving particle is referred as projectile while new element which is formed is called as daughter element.
4) In the present reaction:
<span>1 1 H+ 1 0 n -> 2 1 H
1 1H is a parent nuclei which is bombarded with the fast moving projectile
(1 0 n) to generate a new daughter nuclei (2 1H). </span>
Answer: 63.26%
Explanation:
If we let the abundance of the first isotope be x, then:

Which is equal to <u>63.26%</u>
Answer:
1.32*10^23 molecules
Explanation:
sucrose formula: C12H22O11
molar mass: 12(12.01)+22(1.01)+11(16.00)=342.34g/mol
75.0 g C12H22O11 * (1 mol C12H22O11)/(342.34g C12H22O11)=0.219 mol C12H22O11
0.219 mol * (6.022*10^23)/mol = 1.32*10^23 molecules (three sig. figures)
I believe Erosion is the process most likely responsible for the removal of the missing parts of the rock layers. Erosion involves the physical action of surface processes that removes soil, rock, or dissolved material from one location on the Earth's crust, then moved away to another location.
<h3>
Answer:</h3>
20.62 Kilo-joules
<h3>
Explanation:</h3>
- The Enthalpy of combustion of ethyl alcohol is -950 kJ/mol.
- This means that 1 mole of ethyl alcohol evolves a quantity of heat of 950 Joules when burned.
Molar mass of ethyl ethanol = 46.08 g/mol
Therefore;
46.08 g of C₂H₅OH evolves heat equivalent to 950 kilojoules
We can calculate the amount of heat evolved by 1 g of C₂H₅OH
Heat evolved by 1 g of C₂H₅OH = Molar enthalpy of combustion ÷ Molar mass
= 950 kJ/mol ÷ 46.08 g/mol
= 20.62 Kj/g
Therefore, a gram of C₂H₅OH will evolve 20.62 kilo-joules of heat