Answer:
Fe(NO3)3 + 3 NaOH ===》Fe(OH)3 + 3 NaNO3
Answer: 0.151
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.
The rate in terms of reactants is given as negative as the concentration of reactants is decreasing with time whereas the rate in terms of products is given as positive as the concentration of products is increasing with time.
Given:
Putting in the values we get:
Thus the rate of appearance of
is 0.151
<span>A solution with a pH of 4 has ten times the concentration of H</span>⁺<span> present compared to a solution with a pH of 5.
</span>pH <span>is a numeric scale for the acidity or basicity of an aqueous solution. It is the negative of the base 10 logarithm of the molar concentration of hydrogen ions.
</span>[H⁺] = 10∧-pH.
pH = 4 → [H⁺]₁ = 10⁻⁴ M = 0,0001 M.
pH = 5 → [H⁺]₂ = 10⁻⁵ M = 0,00001 M.
[H⁺]₁ / [H⁺]₂ = 0,0001 M / 0,00001 M.
[H⁺]₁ / [H⁺]₂ = 10.
To minimize the sharp pH shift that occurs when a strong acid is added to a solution, IT IS PRACTICAL TO ADD A WEAK BASE.
When a strong acid is added to a solution, it usually brings about a sharp change in the pH of the concerned solution. To avoid this, one can add a weak base to the solution first. The weak base will serves as a buffer for the strong acid and prevents the solution from experiencing sharp pH variations.