Answer:
the value of the equilibrium constant Kp for this reaction is 0.275
Explanation:
Step 1: Data given
Pressure HCl at the equilibrium = 18.0 atm
Pressure H2 at the equilibrium = 25.4 atm
Pressure Cl2 at the equilibrium = 46.4 atm
Step 2: The balanced equation
H2(g) + Cl2(g) → 2 HCl(g)
Step 3: Calculate the value of the equilibrium constant Kp for this reaction
Kp = (pHCl)² / (pH2*pCl2)
Kp = 18.0² / (25.4 * 46.4)
Kp = 324 / 1178.56
Kp = 0.275
the value of the equilibrium constant Kp for this reaction is 0.275
This change in pressure is caused by changes in air density, and air density is related to temperature.
Answer:
The volume is 1.2L
Explanation:
Initial volume (V1) = 700mL = 0.7L
Initial temperature (T1) = 7°C = (7 + 273.15)K = 280.15K
Initial pressure = 106.6kPa = 106600Pa
Final temperature (T2) = 27°C = (27 + 273.15)K = 300.15K
Final pressure (P2) = 66.6kPa = 66600Pa
Final volume (V2) = ?
To solve this question, we need to use combined gas equation which is a combination of Boyle's law, Charles Law and pressure law.
(P1 × V1) / T1 = (P2 × V2) / T2
solve for V2 by making it the subject of formula,
P1 × V1 × T2 = P2 × V2 × T1
V2 = (P1 × V1 × T2) / (P2 × T1)
V2 = (106600 × 0.7 × 300.15) / (66600 × 280.15)
V2 = 22397193 / 18657990
V2 = 1.2L
The final volume of the gas is 1.2L
Answer:
Percent composition tells you which types of atoms (elements) are present in a molecule and their levels. Percent composition can also tell you about the different elements present in an ionic compound as well.