Answer : The correct option is, (2) Cr (Chromium)
Explanation :
The reactivity series of metal are arranged of the reactivity from the highest to the lowest. Reactivity series is used to determine the products of the single displacement reactions. In the single displacement reaction, the most reactive metal displaces the least reactive metal.
From the given reactivity series we conclude that there are two metal (Mg and Cr) are more reactive metal than the Ni and there are two metal (Pb and Cr) are less reactive metal than the Zn. So, the Cr (Chromium) is the metal which is more active than Ni and less active than Zn.
Hence, the correct option is, (2) Cr
Answer:
<u>C Chemical Energy</u>
Explanation:
food gives us chemical energy which may be transformed to other later..
<em><u>please mark me brainliest</u></em>
The specific heat capacity of the metal given the data from the question is 0.66 J/gºC
<h3>Data obtained from the question</h3>
- Mass of metal (M) = 76 g
- Temperature of metal (T) = 96 °C
- Mass of water (Mᵥᵥ) = 120 g
- Temperature of water (Tᵥᵥ) = 24.5 °C
- Equilibrium temperature (Tₑ) = 31 °C
- Specific heat capacity of the water (Cᵥᵥ) = 4.184 J/gºC
- Specific heat capacity of metal (C) =?
<h3>How to determine the specific heat capacity of the metal</h3>
The specific heat capacity of the sample of the metal can be obtained as follow:
Heat loss = Heat gain
MC(M –Tₑ) = MᵥᵥCᵥᵥ(Tₑ – Tᵥᵥ)
76 × C × (96 – 31) = 120 × 4.184 × (31 – 24.5)
C × 4940 = 3263.52
Divide both side by 4940
C = 3263.52 / 4940
C = 0.66 J/gºC
Learn more about heat transfer:
brainly.com/question/6363778
#SPJ1
Ionic bond is a type of chemical bond that refers to the bonding of <span>oppositely charged ions (anions and cations) because of attraction and the </span>transfer of valence electron(s) between atoms. Cation is the metal that loses electrons and become a positively charged cation, and anions are
the nonmetal that accepts those electrons to become a negatively charged
anion.
According this explanation, an ionic bond is:
B. the force that holds the valence electrons to the atom