Sulfur is the element used to cross-link the hydrocarbon chains when natural rubber undergoes vulcanization.
The invention relates to cross-linking hydrocarbon polymers with aromatic polyazides in the presence of sulfur. It has been discovered that hydrocarbon polymers can be cross-linked when heated with aromatic polyazides.
Answer:
Explanation:
K₂CrO₄ + ( COONa )₂ + 2BaCl₂ = Ba CrO₄ + ( COO ) ₂ Ba + 2 KCl + 2 NaCl
.033 M .053 M
Ksp of Ba CrO₄ is 2.10×10⁻¹⁰
Ksp of ( COO ) ₂ Ba is 1.30×10⁻⁶
A ) Ksp of Ba CrO₄ is less so it will precipitate out first .
B) Ksp = 2.10×10⁻¹⁰
Ba CrO₄ = Ba⁺² + CrO₄⁻²
C .033
C x .033 = 2.10×10⁻¹⁰
C = 63.63 x 10⁻¹⁰ M
Ba⁺² must be present in concentration = 63.63 x 10⁻¹⁰ M
C)
90% of precipitation of barium oxalate
concentration of oxalate to precipitate out = .9 x .0532 = .04788
( COO ) ₂ Ba = (COO)₂⁻² + Ba⁺²
.04788 M C
C x .04788 = 1.30×10⁻⁶
C = 27.15 x 10⁻⁶ M .
Hg(No3)2 +NaSO4 --->2NaNO3 + HgSO4(s)
calculate the moles of each reactant
moles=mass/molar mass
moles of Hg(NO3)2= 51.429g/ 324.6 g/mol(molar mass of Hg(NO3)2)=0.158 moles
moles Na2SO4 16.642g/142g/mol= 0.117 moles of Na2SO4
Na2SO4 is the limiting reagent in the equation and by use mole ratio Na2So4 to HgSO4 is 1:1 therefore the moles of HgSO4 =0.117 moles
mass of HgSO4=moles x molar mass of HgSo4= 0.117 g x 303.6g/mol= 35.5212 grams
Precipitation is the short-term condition of the atmosphere
A element mixture (key word: mixture) due to the mixture containing 2 different types of elements it can be said that it’s highly likely that the mixture was not a compound but instead of a mixture due to mixture meaning more than 1 material. Hopes this help!