Answer:
Option (C) is correct.
Explanation:
Assuming that the hiker starts walking from the origin O as shown in the figure.
First, he walks 200 m west to point A (say), then he walks 100 m north to the final point B (say) as shown in the figure.
The final point B is in the north-west direction, therefore, the resulting point is in the north-west direction.
Hence, option (C) is correct.
Answer:
Knowing that these metals are infact good conductors of electricity we can infer that metals are able to hold and conduct certain temperatures. Another thing we can infer is that these good conductors can be used in connection to transferring energy or electricity.
D is the amount of space object takes up
I'd say potential/kinetic energy.
Answer: vf1/vf2= 1/ sqrt(2)
Explanation :on the moon no drag force so we have only the force of gravity. aceleration is g(moon)= 1.62m/s2.the rest is basic kinematics
if the rock travels H to the bottom we can calculate velocity:
vo=0m/s (drops the rock) , yo=0
vf*vf= vo*vo+2g(y-yo)
when the rock is halfway y = H/2 so:
vf1*vf1=2*g*H/2 so vf1 = sqrt(gH)
when the rock reach the bottom y=H so:
vf2*vf2=2*g*H so vf2 = sqrt(2gH)
so vf1/vf2= 1/ sqrt(2)
good luck from colombia