x = 8
Explanation:
AE = 3x - 4
EC = x + 12
SInce diagonals AC and DB intersect at E
it means the lines which meet at the intersection E are equal. A and C meet at E which gives AE and EC
AE = EC
3x - 4 = x + 12
collect like terms:
3x - x = 12 + 4
2x = 16
divide both sides by 2:
2x/2 = 16/2
x = 8
2/3+3/4=17/12=1.417 This is the anwser
Answer:
5) moves one place to right
6) moves one place to left
Step-by-step explanation:
Answer:
A
Step-by-step explanation:
(2x-3y)^5
(2x-3y)(2x-3y)(2x-3y)(2x-3y)(2x-3y)
1st and 2nd power :
(2x-3y)(2x-3y) = 2x(2x-3y)-3y(2x-3y) = 4x² - 6xy - 6xy + 9y²
= 4x² - 12xy + 9y²
3rd power:
(2x-3y)(4x² - 12xy + 9y²) = 2x(4x² - 12xy + 9y²) - 3y(4x² - 12xy + 9y²)
8x³ - 24x²y + 18xy² - 12x²y +36xy² - 27y³
8x³ - 24x²y - 12x²y + 18xy² + 36xy² - 27y³
8x³ - 36x²y + 54xy² - 27y³
4th power
(2x-3y)(8x³ - 36x²y + 54xy² - 27y³) = 2x(8x³ - 36x²y + 54xy² - 27y³) -3y(8x³ - 36x²y + 54xy² - 27y³) = 16x^4 - 72x³y + 108x²y² - 54xy³ - 24x³y + 108x²y² - 162xy³ + 81y^4
16x^4 - 72x³y - 24x³y + 108x²y² + 108x²y² - 54xy³ - 162xy³ + 81y^4
16x^4 - 96x³y + 216x²y² - 216xy³ + 81y^4
5th power
(2x-3y)(<span>16x^4 - 96x³y + 216x²y² - 216xy³ + 81y^4)
2x(</span>16x^4 - 96x³y + 216x²y² - 216xy³ + 81y^4) - 3y(<span>16x^4 - 96x³y + 216x²y² - 216xy³ + 81y^4)
= 32x^5 - 192x^4y + 432x</span>³y² - 432x²y³ + 162xy^4 - 48x^4y + 288x³y² - 648x²y³ + 648xy^4 - 243y^5
32x^5 - 192x^4y -48x^4y + 432x³y² + 288x³y² - 432x²y³ - 648x²y³ + 162xy^4 + 648xy^4 - 243y^5
32x^5 - 240x^4y + 720x³y² - 1,080x²y³ + 810xy^4 - 243y^5