Answer:
Explanation:
From, the given information: we are not given any value for the mass, the proportionality constant and the distance
Assuming that:
the mass = 5 kg and the proportionality constant = 50 kg
the distance of the mass above the ground x(t) = 1000 m
Let's recall that:

Similarly, The equation of mption:

replacing our assumed values:
where 



So, when the object hits the ground when x(t) = 1000
Then from above derived equation:


By diregarding 

1000 + 0.981 = 0.981 t
1000.981 = 0.981 t
t = 1000.981/0.981
t = 1020.36 sec
Answer:
(a) 42.28°
(b) 37.08°
Explanation:
From the principle of refraction of light, when light wave travels from one medium to another medium, we have:
= sinθ
/sinθ
In the given problem, we are given the refractive indices of light which are parallel and perpendicular to the axis of the optical lens as 1.4864 and 1.6584 respectively.
For critical angle θ
= θ
, θ
= 90°; 
(a) 
= sinθ
/sin90°
0.6728 = sinθ![_{c}θ[tex]_{c} = sin^(-1) 0.6728 = 42.28°(b) [tex]n_{a} = 1.6584](https://tex.z-dn.net/?f=_%7Bc%7D%3C%2Fp%3E%3Cp%3E%CE%B8%5Btex%5D_%7Bc%7D%20%3D%20sin%5E%28-1%29%200.6728%20%3D%2042.28%C2%B0%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%28b%29%20%5Btex%5Dn_%7Ba%7D%20%3D%201.6584)
= sinθ
/sin90°
0.60299 = sinθ[tex]_{c}
θ[tex]_{c} = sin^(-1) 0.60299 = 37.08°
Yes, if the temperature increases, than that means the particles are moving faster. Temperature is the measure of movement of particles in an object or substance.
By thermal energy, you mean adding heat correct....? I'm not very good at this sort of thing, but I gave you what I have..
Answer:
maximum speed of the elevator is 6.54 m/s
Explanation:
given,
force exerted on the elevator is 1.59 times passenger weight.
when the elevator accelerates upward with rate of a.
total force
F = m × (a+g)
1.59× mg = ma + mg
0.59 mg = ma
a = 0.59 g
we also have that
=
= 6.54 m/s
maximum speed of the elevator is 6.54 m/s
Answer:
The glider’s speed after the skydiver lets go is 26 m/s
Explanation:
To calculate the glider’s speed just after the skydiver lets go, we will need to use the conservation of momentum
Mathematically;
mv = mv + mv
so 680 * 26 = (680-60)v + 60 * 26
17680 = 620v + 1560
17680-1560 = 620v
16120 = 620v
v = 16120/620
v = 26 m/s