1) Force = m*a = 1.00 g * (1kg / 1000 g) * 225 m/s^2 = 0.225 N
2) Charge
Force = K (charge)^2 /(distance)^2 => charge = √ [Force * distance^2 / k]
k = 9.00 * 10^9 N*m^2 / C^2
charge = √ [0.225 N * (0.02 m)^2 / 9.00* 10^9 N*m^2 / C^2 ]
charge = 0.0000001 C = 0.0001 mili C
sir what's the question you have all you wrote is it's not b
Acceleration of the table: B. 0.50 meters/second2
Explanation:
The problem can be solved by using Newton's second law of motion, which states that the net force acting on an object is the product of its mass and its acceleration. Mathematically:

where
is the net force
m is the mass
a is the acceleration
For the table in this problem, we have:
is the net force on the table, because there are two forces of 125 N and 120 N acting in opposite directions
m = 10.0 kg is the mass of the table
Solving for a, we find the acceleration:

Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
Use the formula M=D×V:
M=10 g/cm³ * 5 cm³ = 50 g
which is more than 40 grams, so the container cannot hold the chain.
Answer:
the normal force
Explanation:
The free-body diagram represents all the forces acting on an object. In this example, there are four forces acting on the box: an applied force, the friction (which always act opposite to the applied force), the weight of the box (which is always downward), and the normal force.
The normal force is the reaction force exerted by the surface on which the box is moving on the box, and this reaction force is always opposite to the force exerted by the box on the surface. Since the latter is downward, it means that the normal force must be upward, so in the diagram it is wrong.