Answer:
400 N
Explanation:
By the law of friction,

is the maximum frictional force,
is the coefficient of friction and
is the reaction on the refrigerator. On a horizontal surface, the reaction is equal to the weight of the refrigerator.


While not moving, the fricition on the refrigerator is static friction. So, 

This is the maximum frictional force and is more than the applied horizontal force of 400 N. Frictional force cannot be more than the applied force, else it would actually pull the refrigerator backwards (a strange thing, if it were to happen). It is equal to the extent of the applied force because the applied force is not enough to overcome the maximum.
Hence the frictional force is 400 N.
PS: Note that we do not use the coefficient of kinetic friction because applied force could not overcome the static friction.
Answer:
A permanent magnet creates a magnetic field at all points in the surrounding region.
An electric current in a conductor creates a magnetic field at all points in the surrounding region.
A moving electric charge creates a magnetic field at all points in the surrounding region.
Explanation:
Magnet field is a region around the magnet in which the magnetic force can be experienced. A magnet has two poles: North pole and South pole. A Magnetic field originates from north pole and ends at south pole.
Magnets are of two types: Permanent magnet and temporary magnet.
A moving charge produces magnetic field. A stationary charge can not produce a magnetic field.
The rate of flowing charge constitutes an electric current. If the cardboard is placed around the current carrying conductor and the iron fillings spread around the cardboard then the iron nails get stick to it. It means that a current carrying conductor creates a magnetic field around it.
Therefore, the true statements from the given statements are as follows;
A permanent magnet creates a magnetic field at all points in the surrounding region.
An electric current in a conductor creates a magnetic field at all points in the surrounding region.
A moving electric charge creates a magnetic field at all points in the surrounding region.
The particles can undergo small oscillations around x₂.
The given parameters;
- <em>initial energy of the particles = E₁</em>
- <em>final energy of the particles, E₂ = 0.33E₁</em>
The movement of the particles depends on the kinetic energy of the particles.
When kinetic energy of the particles is 100%, the particles can oscillate from x₁ to x₅.
However, when the total energy of this particles is reduced to one-third (¹/₃) or 33% of the initial energy of the particle, the oscillation of the particles will be reduced.
- The maximum position the particle can oscillate is x₅
- The half position the particles can oscillate is x₃
Since 33% is less than the half of the energy of the particle, the particle will oscillate between x₁ and x₂.
Thus, we can conclude that the particles can undergo small oscillations around x₂.
Learn more here:brainly.com/question/23910777
Answer:
Satellite D has a mass (kg) of 500 and the distance from Earth (km) is 320.
Explanation:
The universal law of gravitation states that the force between two objects in the universe is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.
We have to choose the satellite having greatest gravitational force with earth. In all options the distance from the earth is same i.e. 320 km. So, we have to select the satellite having maximum mass because the mass of the earth is constant.
Hence, the correct option is (D) " Satellite D has a mass (kg) of 500 and the distance from Earth (km) is 320 ".