The answer for this question is letter "B.Fission releases energy, and its products have greater stability."
Fission and Fusion are both nuclear reactions that when they release energy, they make the nuclei more stable. So among the choices, option B is the most fitting for the definition.
Another (slightly more technical) name for kidney stones is "renal calculus".
I know this because we have met many times, and we are old friends.
Given Information:
Angular displacement = θ = 51 cm = 0.51 m
Radius = 1.8 cm = 0.018 m
Initial angular velocity = ω₁ = 0 m/s
Angular acceleration = α = 10 rad/s
²
Required Information:
Final angular velocity = ω₂ = ?
Answer:
Final angular velocity = ω₂ = 21.6 rad/s
Explanation:
We know from the equations of kinematics,
ω₂² = ω₁² + 2αθ
Where ω₁ is the initial angular velocity that is zero since the toy was initially at rest, α is angular acceleration and θ is angular displacement.
ω₂² = (0)² + 2αθ
ω₂² = 2αθ
ω₂ = √(2αθ)
We know that the relation between angular displacement and arc length is given by
s = rθ
θ = s/r
θ = 0.51/0.018
θ = 23.33 radians
finally, final angular velocity is
ω₂ = √(2αθ)
ω₂ = √(2*10*23.33)
ω₂ = 21.6 rad/s
Therefore, the top will be rotating at 21.6 rad/s when the string is completely unwound.
Answer:
45coulombs
Explanation:
Using your equation current=0.9 & time=50secs multiply and your answer is 45. Hope the answer is good enough for u
Answer:
It's only 1.11 m/s2 weaker at 400 km above surface of Earth
Explanation:
Let Earth radius be 6371 km, or 6371000 m. At 400km above the Earth surface would be 6371 + 400 = 6771 km, or 6771000 m
We can use Newton's gravitational law to calculate difference in gravitational acceleration between point A (Earth surface) and point B (400km above Earth surface):

where G is the gravitational constant, M is the mass of Earth and r is the distance form the center of Earth to the object





So the gravitational acceleration at 400km above surface is only 0.885 the gravitational energy at the surface, or 0.885*9.81 = 8.7 m/s2, a difference of (9.81 - 8.7) = 1.11 m/s2.