Answer:
A. It does not exhibit projectile motion and follows a straight path down the ramp.
Answer:
(c) 16 m/s²
Explanation:
The position is
.
The velocity is the first time-derivative of <em>r(t).</em>
<em />
<em />
The acceleration is the first time-derivative of the velocity.

Since <em>a(t)</em> does not have the variable <em>t</em>, it is constant. Hence, at any time,

Its magnitude is 16 m/s².
One of the equations of gravity is this:

Where v = final velocity which is 7m/s
u = initial velocity which is 0 for objects falling from a height
g = acceleration due to gravity and it is approximately 10m/s^2. It's a constant so pretty much remember this number. It's positive since the work being done is caused by gravity (in other words, it's falling down). It can also be negative if the work being down is against gravity (in other words, it's going up)
h = height of object
Substitute for the values and you should have something like this



Answer:If an object's speed changes, or if it changes the direction it's moving in,
then there must be forces acting on it. There is no other way for any of
these things to happen.
Once in a while, there may be a group of forces (two or more) acting on
an object, and the group of forces may turn out to be "balanced". When
that happens, the object's speed will remain constant, and ... if the speed
is not zero ... it will continue moving in a straight line. In that case, it's not
possible to tell by looking at it whether there are any forces acting on it
C. unbalanced is the correct answer for newton's first law.