Answer:
4.06 Hz
Explanation:
For simple harmonic motion, frequency is given by
where k is spring constant and m is the mass of the object.
Substituting 0.2 Kg for mass and 130 N/m for k then
the electric force decreases because the distance has an indirect relationship to the force
Explanation:
The electric force between two objects is given by
where
k is the Coulomb's constant
q1 and q2 are the charges of the two objects
r is the distance between the two objects
As we can see from the formula, the magnitude of the force is inversely proportional to the square of the distance: so, when the distance between the object increases, the magnitude of the force decreases.
<u><em>Answer:Just as wavelength and frequency are related to light, they are also related to energy. The shorter the wavelengths and higher the frequency corresponds with greater energy. So the longer the wavelengths and lower the frequency results in lower energy.</em></u>
<u><em /></u>
Explanation:So, if the wavelength of a light wave is shorter, that means that the frequency will be higher because one cycle can pass in a shorter amount of time. ... That means that longer wavelengths have a lower frequency. Conclusion: a longer wavelength means a lower frequency, and a shorter wavelength means a higher frequency!
<em>Extra explanation: All waves can be defined in terms of their frequency and intensity. c = λν expresses the relationship between wavelength and frequency.</em>
During that period of time, the bird's displacement was 4 km east. So its velocity was (4km east)/(11hrs). That's 0.36 km/hour east. (rounded)
The heat required to change 1.25 kg of steak is 2825 kJ /kg.
<u>Explanation</u>:
Given, mass m = 1.25 kg, Temperature t = 100 degree celsius
To calculate the heat required,
Q = m L
where m represents the mass in kg,
L represents the heat of vaporization.
When a material in the liquid state is given energy, it changes its phase from liquid to vapor and the energy absorbed in this process is called heat of the vaporization. The heat of vaporization of the water is about 2260 kJ/kg.
Q = 1.25 2260
Q = 2825 kJ /kg.