1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
finlep [7]
3 years ago
10

A 1200 kg car accelerates from 0 m/s to 25 m/s in 10 seconds. how much work was done on the car by the net force?

Physics
1 answer:
Blizzard [7]3 years ago
5 0
Are there any answer choices

You might be interested in
A golf club with 65J of kinetic energy strikes a stationary golf ball with a mass of 46g. The energy transfer is only 20% effici
umka21 [38]
Kinetic energy of golf club = 65J, 
kinetic energy supplied to golf ball = 20% of 65 = 0.2 * 65 = 13J,
kinetic energy of ball = [mass * Velocity²]/2,
mass = 46gm = 0.046Kg,
[0.046 * V²]/2 = 13, or 0.046 *V² = 26, 
V² = 26/0.046 = 565.22, 
V = 23.77 m/sec = initial velocity of golf ball after hitting.
4 0
3 years ago
A 740-kg boulder is raised from a quarry 119 m deep by a long uniform chain having a mass of 550 kg . This chain is of uniform s
Naddika [18.5K]

Answer:

A) the maximum acceleration the boulder can have and still get out of the quarry

B) how long does it take to be lifted out at maximum acceleration if it started from rest

Explanation:

A)

let +y is upward. look below at the free body diagram. the mass M refers to the combined mass of the boulder and chain.

the weight of the chain is:   w_{c} =m_{c} g   and maximum tension is T=2.50 m_{c} g=1.41*10^4N

total mass and weight is :

M =m_{c}+ m_{b} =740kg+550kg=1290 kg

w_{M} =1.2650*10^4N

∑F_{y} =ma_{y}

T-M_{g} =Ma_{y}

a_{y} =(t-M_{g} )/M=(2.50m_{c} -M_{g} )/M=(2.50.550kg-1290kg)(9.8m/s^2)/1290kg

=0.645m/s^2

B)

maximum acceleration

a_{y} =0.645m/s^2\\\\y-y_{0} =119m\\v_{0y} =0

using y-y_{0} =v_{oy} t+1/2(a_{y} )t^2

to solve for t

t=\sqrt{2(y-y_{0} )/a_{y} }

t=\sqrt{2(119m)/0.645m/s^2} =19.20s

6 0
3 years ago
(1) In nondestructive testing, a discontinuity may be defined as an interruption in the normal physical structure or configurati
QveST [7]

Answer: BOTH ARE TRUE

Explanation: Nondestructive testing or Evaluation is a term used in the field of science and technology to describe the evaluations, analysis or testing carried out on components of materials without destroying any part or components of the test materials. It is very useful in scientific research or industrial engineering environments. When any disruption of physical structure or configuration of a component will lead to discontinuing of the test, and it may not affect the usefulness of the affected parts.

4 0
3 years ago
Cancer and diabetes are two common hereditary diseases.
Klio2033 [76]

It is a true statement that cancer and diabetes are two common hereditary diseases.

<h3>What are hereditary diseases?</h3>

The term hereditary diseases are those diseases that occur in parents and could also be found in their offspring. For many of these hereditary diseases, the mechanism of inheritance is unclear.

However, it is a true statement that cancer and diabetes are two common hereditary diseases.

Missing parts:

Cancer and diabetes are two common hereditary diseases. A. True B. False.

Learn more about hereditary diseases:brainly.com/question/9367480?r

#SPJ1

3 0
2 years ago
Sphere A of mass 0.600 kg is initially moving to the right at 4.00 m/s. sphere B, of mass 1.80 kg is initially to the right of s
anzhelika [568]

A) The velocity of sphere A after the collision is 1.00 m/s to the right

B) The collision is elastic

C) The velocity of sphere C is 2.68 m/s at a direction of -5.2^{\circ}

D) The impulse exerted on C is 4.29 kg m/s at a direction of -5.2^{\circ}

E) The collision is inelastic

F) The velocity of the center of mass of the system is 4.00 m/s to the right

Explanation:

A)

We can solve this part by using the principle of conservation of momentum. The total momentum of the system must be conserved before and after the collision:

p_i = p_f\\m_A u_A + m_B u_B = m_A v_A + m_B v_B

m_A = 0.600 kg is the mass of sphere A

u_A = 4.00 m/s is the initial velocity of the sphere A (taking the right as positive direction)

v_A is the final velocity of sphere A

m_B = 1.80 kg is the mass of sphere B

u_B = 2.00 m/s is the initial velocity of the sphere B

v_B = 3.00 m/s is the final velocity of the sphere B

Solving for vA:

v_A = \frac{m_A u_A + m_B u_B - m_B v_B}{m_A}=\frac{(0.600)(4.00)+(1.80)(2.00)-(1.80)(3.00)}{0.600}=1.00 m/s

The sign is positive, so the direction is to the right.

B)

To verify if the collision is elastic, we have to check if the total kinetic energy is conserved or not.

Before the collision:

K_i = \frac{1}{2}m_A u_A^2 + \frac{1}{2}m_B u_B^2 =\frac{1}{2}(0.600)(4.00)^2 + \frac{1}{2}(1.80)(2.00)^2=8.4 J

After the collision:

K_f = \frac{1}{2}m_A v_A^2 + \frac{1}{2}m_B v_B^2 = \frac{1}{2}(0.600)(1.00)^2 + \frac{1}{2}(1.80)(3.00)^2=8.4 J

The total kinetic energy is conserved: therefore, the collision is elastic.

C)

Now we analyze the collision between sphere B and C. Again, we apply the law of conservation of momentum, but in two dimensions: so, the total momentum must be conserved both on the x- and on the y- direction.

Taking the initial direction of sphere B as positive x-direction, the total momentum before the collision along the x-axis is:

p_x = m_B v_B = (1.80)(3.00)=5.40 kg m/s

While the total momentum along the y-axis is zero:

p_y = 0

We can now write the equations of conservation of momentum along the two directions as follows:

p_x = p'_{Bx} + p'_{Cx}\\0 = p'_{By} + p'_{Cy} (1)

We also know the components of the momentum of B after the collision:

p'_{Bx}=(1.20)(cos 19)=1.13 kg m/s\\p'_{By}=(1.20)(sin 19)=0.39 kg m/s

So substituting into (1), we find the components of the momentum of C after the collision:

p'_{Cx}=p_B - p'_{Bx}=5.40 - 1.13=4.27 kg m/s\\p'_{Cy}=p_C - p'_{Cy}=0-0.39 = -0.39 kg m/s

So the magnitude of the momentum of C is

p'_C = \sqrt{p_{Cx}^2+p_{Cy}^2}=\sqrt{4.27^2+(-0.39)^2}=4.29 kg m/s

Dividing by the mass of C (1.60 kg), we find the magnitude of the velocity:

v_c = \frac{p_C}{m_C}=\frac{4.29}{1.60}=2.68 m/s

And the direction is

\theta=tan^{-1}(\frac{p_y}{p_x})=tan^{-1}(\frac{-0.39}{4.27})=-5.2^{\circ}

D)

The impulse imparted by B to C is equal to the change in momentum of C.

The initial momentum of C is zero, since it was at rest:

p_C = 0

While the final momentum is:

p'_C = 4.29 kg m/s

So the magnitude of the impulse exerted on C is

I=p'_C - p_C = 4.29 - 0 = 4.29 kg m/s

And the direction is the angle between the direction of the final momentum and the direction of the initial momentum: since the initial momentum is zero, the angle is simply equal to the angle of the final momentum, therefore -5.2^{\circ}.

E)

To check if the collision is elastic, we have to check if the total kinetic energy is conserved or not.

The total kinetic energy before the collision is just the kinetic energy of B, since C was at rest:

K_i = \frac{1}{2}m_B u_B^2 = \frac{1}{2}(1.80)(3.00)^2=8.1 J

The total kinetic energy after the collision is the sum of the kinetic energies of B and C:

K_f = \frac{1}{2}m_B v_B^2 + \frac{1}{2}m_C v_C^2 = \frac{1}{2}(1.80)(1.20)^2 + \frac{1}{2}(1.60)(2.68)^2=7.0 J

Since the total kinetic energy is not conserved, the collision is inelastic.

F)

Here we notice that the system is isolated: so there are no external forces acting on the system, and this means the system has no acceleration, according to Newton's second law:

F=Ma

Since F = 0, then a = 0, and so the center of mass of the system moves at constant velocity.

Therefore, the centre of mass after the 2nd collision must be equal to the velocity of the centre of mass before the 1st collision: which is the velocity of the sphere A before the 1st collision (because the other 2 spheres were at rest), so it is simply 4.00 m/s to the right.

Learn more about momentum and collisions:

brainly.com/question/6439920

brainly.com/question/2990238

brainly.com/question/7973509

brainly.com/question/6573742

#LearnwithBrainly

8 0
3 years ago
Other questions:
  • Use the collision theory to explain how increasing the temperature of a reaction will affect the rate of the reaction.
    6·1 answer
  • Answer fast please !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    15·2 answers
  • A single-slit diffraction pattern is formed on a distant screen. Assuming the angles involved are small, by what factor will the
    11·1 answer
  • How is sound detected by the brain
    8·2 answers
  • Overfishing-which threatens many deep-water fish species-is in some way a direct reaction to what phenomenon?
    11·2 answers
  • The two ends of an iron rod are maintained at different temperatures. The amount of heat that flows through the rod by conductin
    13·1 answer
  • Why do adults make bigger splashes when they jump into swimming pools than small children?
    10·1 answer
  • A hockey ball accelerates from 0.m/s to 25m/s in 0.05 seconds what is the acceleration of the ball ?
    13·1 answer
  • The force shown in the figure(Figure 1) moves an object from x = 0 to x = 0.75 m.
    13·1 answer
  • A toroidal solenoid has 600 turns, cross-sectional area 6.90 cm2, and mean radius 4.30 cm.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!