Solution:
According to the equations for 1-D kinematics. The only change to them is that instead one equation that describes general motion.
So we will have to use the equations twice: once for motion in the x direction and another time for the y direction.
v_f=v_o + at ……..(a)
[where v_f and v_o are final velocity and initial velocity, respectively]
Now ,
Initially, there was y velocity, however gravity began to act on the football, causing it to accelerate.
Applying this value in equation (a)
v_yf = at = -9.81 m/s^s * 1.75 = -17.165 m/s in the y direction
For calculating the magnitude of the equation we have to square root the given value
(16.6i - 17.165y)
\\
\left | V \right |=sqrt{16.6^{2}+17.165^{2}}\\ =
\sqrt{275.56+294.637225}\\=
\sqrt{570.197225}\\=
23.87[/tex]
Strength/magnitude would both work
Answer:

Explanation:
Given:
- angle of launch of projectile from horizontal,

- range of projectile,

<u>We have formula for the range of projectile:</u>

putting the respective values

is the velocity with which Tom should jump to land on the other roof.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
Below are the choices the can be found elsewhere:
A.) 14 newtons upward
<span>B.) 45 newtons upward </span>
<span>C.) 67 newtons upward </span>
<span>D.) 130 newtons upward </span>
<span>E.) 150 newtons upward
</span>
The answer is A.) 14 newtons upward
Where are the statements? You forgot to attach them lol