Answer:
Explanation:
i = Imax sin2πft
given i = 180 , Imax = 200 , f = 50 , t = ?
Put the give values in the equation above
180 = 200 sin 2πft
sin 2πft = .9
sin2π x 50t = .9
sin 360 x 50 t = sin ( 360n + 64 )
360 x 50 t = 360n + 64
360 x 50 t = 64 , ( putting n = 0 for least value of t )
18000 t = 64
t = 3.55 ms .
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
<span>Have Bobby as a horizontal force pushing towards/against the tv.
</span><span>Have the force of gravity going downwards from the tv on the floor.
</span><span>Have the force of fric±on between the Foor and the tv
</span>Maybe another force could be bobby's feet pushing from the Foor and his weight (from gravity) bearingdown on his feet. If he didn't weigh more then the tv then he wouldn't be able to put enough pressure<span>on the Foor to create the gripping fric±on force necessary to push the tv</span>
<span> Let’s determine the initial momentum of each car.
#1 = 998 * 20 = 19,960
#2 = 1200 * 17 = 20,400
This is this is total momentum in the x direction before the collision. B is the correct answer. Since momentum is conserved in both directions, this will be total momentum is the x direction after the collision. To prove that this is true, let’s determine the magnitude and direction of the total momentum after the collision.
Since the y axis and the x axis are perpendicular to each other, use the following equation to determine the magnitude of their final momentum.
Final = √(x^2 + y^2) = √(20,400^2 + 19,960^2) = √814,561,600
This is approximately 28,541. To determine the x component, we need to determine the angle of the final momentum. Use the following equation.
Tan θ = y/x = 19,960/20,400 = 499/510
θ = tan^-1 (499/510)
The angle is approximately 43.85˚ counter clockwise from the negative x axis. To determine the x component, multiply the final momentum by the cosine of the angle.
x = √814,561,600 * cos (tan^-1 (499/510) = 20,400</span>
Answer:
3 a is the ans i think so ....