Given gravitational potential energy when he's lifted is 2058 J.
Kinetic energy is transferred to the person.
Amount of kinetic energy the person has is -2058 J
velocity of person = 7.67 m/s².
<h3>
Explanation:</h3>
Given:
Weight of person = 70 kg
Lifted height = 3 m
1. Gravitational potential energy of a lifted person is equal to the work done.
Gravitational potential energy is equal to 2058 Joules.
2. The Gravitational potential energy is converted into kinetic energy. Kinetic energy is being transferred to the person.
3. Kinetic energy gained = Potential energy lost =
Kinetic energy gained by the person = (-2058 kg.m/s²)
4. Velocity = ?
Kinetic energy magnitude=
Solving for v, we get
The person will be going at a speed of 7.67 m/s².
Answer:
520000 or 520000 pa
Force = 520N
Area of contact = 0.001
Pressure: 520000 or 520000
Explanation:
it dosent depend on the weights of the items. I'll reach the ground at same time taking as no air friction or restrictions.
i.e
v = u + gt
whte v is final velocity of the object
u is initial velocity of the object
g is acceleration due to gravity and
t is time. thanks
please if found helpful rate brainliest
Answer:
Impulse, |J| = 0.6716 kg-m/s
Force, F = 63.35 N
Explanation:
It is given that,
Mass of the baseball, m = 0.146 kg
Initial speed of the ball, u = 15.3 m/s
Final speed of the ball, v = 10.7 m/s
To find,
(a) The magnitude of this impulse.
(b) The magnitude of the average force of the glass on the ball.
Solution,
(a) Impulse of an object is equal to the change in its momentum. It is given by :
J = -0.6716 kg-m/s
or
|J| = 0.6716 kg-m/s
(b) Another definition of impulse is given by the product of force and time of contact.
t = 0.0106 s
F = 63.35 N
Hence, this is the required solution.