It will be traveling exactly 24 miles per hour <span />
Answer:
Explanation:
4/1=4
3/2=1.5
2/3=0.666667
1/4=0.25
D has the least number so its D
Explanation:
Formula to calculate angular acceleration is as follows.
![\Delta (\theta) = \frac{1}{2} \alpha \Delta t^{2} + \omega_{1} \Delta t](https://tex.z-dn.net/?f=%5CDelta%20%28%5Ctheta%29%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Calpha%20%5CDelta%20t%5E%7B2%7D%20%2B%20%5Comega_%7B1%7D%20%5CDelta%20t)
or, ![\alpha = \frac{2(\Delta (\theta) - \omega_{1} \Delta t)}{\Delta t^{2}}](https://tex.z-dn.net/?f=%5Calpha%20%3D%20%5Cfrac%7B2%28%5CDelta%20%28%5Ctheta%29%20-%20%5Comega_%7B1%7D%20%5CDelta%20t%29%7D%7B%5CDelta%20t%5E%7B2%7D%7D)
Putting the given values into the above formula as follows.
![\alpha = \frac{2(\Delta (\theta) - \omega_{1} \Delta t)}{\Delta t^{2}}](https://tex.z-dn.net/?f=%5Calpha%20%3D%20%5Cfrac%7B2%28%5CDelta%20%28%5Ctheta%29%20-%20%5Comega_%7B1%7D%20%5CDelta%20t%29%7D%7B%5CDelta%20t%5E%7B2%7D%7D)
=
= 0.326 ![rad/s^{2}](https://tex.z-dn.net/?f=rad%2Fs%5E%7B2%7D)
Thus, we can conclude that the wheel’s angular acceleration if its initial angular speed is 2.5 rad/s is 0.326
.
<span>The answer is Multichannel, single phase. </span>Machine breakdown and repair in a twelve machine factory having three repair mechanics would develop a Multichannel, single phase queuing system line structure concerning machine breakdowns. It is <span>Multiple
servers, one phase of service.</span>