Explanation:
Final velocity=Initial velocity+(acceleration×time)
4 ways to find initial velocity:
1) Initial velocity=Final velocity-(acceleration×time)
2) Initial velocity=(Distance/Time)-((acceleration×time)/2)
3) Initial velocity=√Final velocity-(2×(acceleration×distance))
4) Initial velocity=2(distance/time)-Final velocity
Total force = Mass×Acceleration
(F=ma)
Answer:
the speed of the car at the top of the vertical loop 
the magnitude of the normal force acting on the car at the top of the vertical loop 
Explanation:
Using the law of conservation of energy ;


The magnitude of the normal force acting on the car at the top of the vertical loop can be calculated as:
![F_{N} = \frac{mv^2_{top}}{R} \ - mg\\\\F_{N} = \frac{m(2.0 \sqrt{gR})^2}{R} \ - mg\\\\F_{N} = [(2.0^2-1]mg\\\\F_{N} = [(2.0)^2 -1) (50*10^{-3} \ kg)(9.8 \ m/s^2]\\\\](https://tex.z-dn.net/?f=F_%7BN%7D%20%3D%20%5Cfrac%7Bmv%5E2_%7Btop%7D%7D%7BR%7D%20%5C%20-%20mg%5C%5C%5C%5CF_%7BN%7D%20%3D%20%5Cfrac%7Bm%282.0%20%5Csqrt%7BgR%7D%29%5E2%7D%7BR%7D%20%5C%20-%20mg%5C%5C%5C%5CF_%7BN%7D%20%3D%20%5B%282.0%5E2-1%5Dmg%5C%5C%5C%5CF_%7BN%7D%20%3D%20%5B%282.0%29%5E2%20-1%29%20%2850%2A10%5E%7B-3%7D%20%5C%20kg%29%289.8%20%5C%20m%2Fs%5E2%5D%5C%5C%5C%5C)

A device that uses electromagnetic induction to transfer electrical energy from one circuit to another is a transformer.
<h3>Which device uses electromagnetic induction to transfer electrical energy from one circuit to another?</h3>
- A transformer is an electrical device that transfers energy from one electric circuit to another using the electromagnetic induction principle.
- It is intended to change the AC voltage between the circuits while keeping the current's frequency constant.
- A transformer work on the principle of electromagnetic induction in which flux is linked from primary to secondary.
- Transformers accomplish this without establishing a conductive link between the two circuits. This is made feasible by using Faraday's Law of Induction, which explains how an electric circuit will interact with a magnetic field to produce an electromotive force (EMF).
To learn more about transformers refer:
brainly.com/question/25886292
#SPJ4
The Bohr model resembles a planetary system in which the negatively-charged electrons orbit a small and very dense, positively-charged nucleus at the atom's center.
The electrons are held in orbit by the Coulomb (electrical) force between the positively-charged nucleus and the negatively-charged electrons.
The electrons cannot occupy just any orbital radius.
Only orbits with a very specific set of energy values are permitted (which all atoms of a given element have in common and are unique to that element).
The lowest energy (or ground state) corresponds to orbit closest to the nucleus and photons with specific amounts of electromagnetic radiation are absorbed or emitted when an electron moves from one orbit to another (absorbed to move further up the permitted levels and away from the nucleus)
An atomic line spectrum is the whole range of specific photon radiation frequencies that an element can emit or absorb as it's electrons move between the energy levels allowed in those atoms.
The emissions correspond with electrons descending 'down' their energy levels, with the energy differences being carried away by photons with the appropriate frequency. Consequently an emission spectra is a series of specific, single color lines (against a black background) for each of the emitted frequencies.
Photon absorption provides the energy for electrons to 'climb' the set of energy levels for that element. So, putting electrons into higher energy states within an atom.
When the absorbed photons are removed from incident light containing the full spectrum, their absence is seen as a series of fine black lines on an otherwise continuous spectrum background.
<span>
The features in absorption and emission spectra coincide exactly for atoms of a given element. </span>