1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mash [69]
3 years ago
15

How long do congressional terms last

Physics
1 answer:
zhannawk [14.2K]3 years ago
7 0
Idkidkidkidk IDK IDK IDK IDk IDK
You might be interested in
A man supports himself and the uniform horizontal beam pulling the rope with a force T.The weights of men and the beam are 883 N
artcher [175]

Answer:

T=502.5N

Ax=171.8N

Explanation:

The computation of the tension T in the rope and the forces exerted by the pin at A is shown below:

vertical forces sum = Ay + Tsin20 + T - 245 - 883 = 0

Now  

horizontal forces sum = Ax - Tcos70

Now Moment about B

-Ay × 4.8 + 245 × 2.4 + 883 × 1.8=0

Ay=453.6N

Now substitute in sum of vertical forces T=502.5N

Ax=171.8N

3 0
3 years ago
What is the density of 15 cm3 and 3 g?
lilavasa [31]

Answer:

0.2

Explanation:

3/15

6 0
3 years ago
A bullet fired into a fixed target loses half of its velocity after penetrating 3 cm. How much further it will penetrate before
Darina [25.2K]

{\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{First \: penetrating \: length\:(s_{1}) = 3 \: cm}

\\

{\mathfrak{\underline{\purple{\:\:\:To \:Find:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Left \: Penetration \: length \: before  \: it \: comes \: to \: rest \:( s_{2} )}

\\

{\mathfrak{\underline{\purple{\:\:\: Calculation:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Let \: Initial \: velocity   = v\:m/s} \\\\

\:\:\:\:\bullet\:\:\:\sf{Left \: velocity \: after \:  s_{1} \: penetration =  \dfrac{v}{2}  \:m/s} \\\\

\:\:\:\:\bullet\:\:\:\sf{s_{1} =  \dfrac{3}{100}  = 0.03 \: m}

\\

☯ As we know that,

\\

\dashrightarrow\:\: \sf{ {v}^{2}  =  {u}^{2} + 2as }

\\

\dashrightarrow\:\: \sf{  \bigg(\dfrac{v}{2} \bigg)^{2}  =  {v}^{2}   + 2a s_{1}}

\\

\dashrightarrow\:\: \sf{  \dfrac{ {v}^{2} }{4}  =  {v}^{2}  + 2 \times a \times 0.03  }

\\

\dashrightarrow\:\: \sf{ \dfrac{ {v}^{2} }{4}  -  {v}^{2}  = 0.06 \times a  }

\\

\dashrightarrow\:\: \sf{\dfrac{ -  3{v}^{2} }{4}  = 0.06 \times a  }

\\

\dashrightarrow\:\: \sf{a =  \dfrac{ - 3 {v}^{2} }{4 \times 0.06}  }

\\

\dashrightarrow\:\: \sf{ a =  \dfrac{ - 25 {v}^{2} }{2}\:m/s^{2} ......(1) }

\\

\:\:\:\:\bullet\:\:\:\sf{  Initial\:velocity=v\:m/s} \\\\

\:\:\:\:\bullet\:\:\:\sf{ Final \: velocity = 0 \: m/s }

\\

\dashrightarrow\:\: \sf{  {v}^{2}  =  {u}^{2}  + 2as}

\\

\dashrightarrow\:\: \sf{{0}^{2}  =  {v}^{2}  + 2 \times  \dfrac{ - 25 {v}^{2} }{2}  \times s  }

\\

\dashrightarrow\:\: \sf{ -  {v}^{2}  =  - 25 {v}^{2}  \times s  }

\\

\dashrightarrow\:\: \sf{  s =  \dfrac{ -  {v}^{2} }{ - 25 {v}^{2} }}

\\

\dashrightarrow\:\: \sf{  s =  \dfrac{1}{25} }

\\

\dashrightarrow\:\: \sf{ s = 0.04 \: m }

\\

☯ For left penetration (s₂)

\\

\dashrightarrow\:\: \sf{s =  s_{1} +  s_{2}  }

\\

\dashrightarrow\:\: \sf{  0.04 = 0.03 +  s_{2}}

\\

\dashrightarrow\:\: \sf{ s_{2} = 0.04 - 0.03 }

\\

\dashrightarrow\:\: \sf{s_{2} = 0.01 \: m = {\boxed{\sf{\purple{1 \: cm }}} }}

\\

\star\:\sf{Left \: penetration \: before  \: it \: come \: to \: rest \: is \:{\bf{ 1 \: cm}}} \\

4 0
2 years ago
A stone is thrown at an angle of 30 degrees above the horizontal from the top edge of a cliff with an initial speed of 12 m/s. A
natta225 [31]

v = initial velocity of launch of the stone = 12 m/s

θ = angle of the velocity from the horizontal = 30

Consider the motion of the stone along the vertical direction taking upward direction as positive and down direction as negative.

v₀ = initial velocity along vertical direction = v Sinθ = 12 Sin30 = 6 m/s

a = acceleration of the stone = - 9.8 m/s²

t = time of travel = 4.8 s

Y = vertical displacement of stone = vertical height of the cliff = ?

using the kinematics equation

Y = v₀ t + (0.5) a t²

inserting the values

Y = 6 (4.8) + (0.5) (- 9.8) (4.8)²

Y = - 84.1 m

hence the height of the cliff comes out to be 84.1 m

5 0
3 years ago
A simple pendulum is made by tying a 2.44 kg stone to a string 4.57 m long. The stone is projected perpendicularly to the string
alexdok [17]

Answer:

v_{max}=8.2226m/s

Explanation:

The problem is solved using the law of conservation of energy,

So

mgL(1-cos\theta)+\frac{1}{2}mv^2_0=\frac{1}{2}mv^2_{max}

v_{max}=\sqrt{2gL(1-cos\theta)+v^2_0}

v_{max}=\sqrt{2(9.8)(4.57)(1-cos(69.4))+8^2}

v_{max}=8.2226m/s

8 0
3 years ago
Other questions:
  • Susan works 8 hours a day and makes $7.00 per hour. How much money does Susan earn in one week if she
    7·2 answers
  • Can objects in a system have momentum while the momentum of the system is zero? explain your answer.
    12·1 answer
  • Is radiation the transfer of energy in the form of particles
    12·1 answer
  • For trapezoid JKLM, A and B are midpoints of the legs. Find AB.
    5·1 answer
  • ou have designed and constructed a solenoid to produce a magnetic field equal in magnitude to that of the Earth (5.0 10-5 T). If
    5·1 answer
  • 5N of force is applied to move a large nail a distance of 10 cm from an electromagnet on a frictionless table. The nail is then
    15·1 answer
  • The total amount of kinetic energy and potential energy within a system is called
    11·2 answers
  • Give two examples of workplace environments where considerations must be made with respect to the possibility of electric discha
    9·1 answer
  • Poderiam me ajudar? A pergunta está na foto
    5·1 answer
  • Even though it's not very popular these days, I like our system . Getting together to talk about who the best candidate might be
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!