Answer: 276 days
Explanation:
This problem can be solved using the Radioactive Half Life Formula:
(1)
Where:
is the final amount of the material
is the initial amount of the material
is the time elapsed
is the half life of polonium-210
Knowing this, let's substitute the values and find
from (1):
(2)
(3)
(4)
Applying natural logarithm in both sides:
(5)
(6)
Clearing
:
(7)
The ship floats in water due to the buoyancy Fb that is given by the equation:
Fb=ρgV, where ρ is the density of the liquid, g=9.81 m/s² is the acceleration of the force of gravity and V is volume of the displaced liquid.
The density of fresh water is ρ₁=1000 kg/m³.
The density of salt water is in average ρ₂=1025 kg/m³.
To compare the volumes of liquids that are displaced by the ship we can take the ratio of buoyancy of salt water Fb₂ and the buoyancy of fresh water Fb₁.
The gravity force of the ship Fg=mg, where m is the mass of the ship and g=9.81 m/s², is equal to the force of buoyancy Fb₁ and Fb₂ because the mass of the ship doesn't change:
Fg=Fb₁ and Fg=Fb₂. This means Fb₁=Fb₂.
Now we can write:
Fb₂/Fb₁=(ρ₂gV₂)/(ρ₁gV₁), since Fb₁=Fb₂, they cancel out:
1/1=1=(ρ₂gV₂)/(ρ₁gV₁), g also cancels out:
(ρ₂V₂)/(ρ₁V₁)=1, now we can input ρ₁=1000 kg/m³ and ρ₂=1025 kg/m³
(1025V₂)/(1000V₁)=1
1.025(V₂/V₁)=1
V₂/V₁=1/1.025=0.9756, we multiply by V₁
V₂=0.9756V₁
Volume of salt water V₂ displaced by the ship is smaller than the volume of sweet water V₁ because the force of buoyancy of salt water is greater than the force of fresh water because salt water is more dense than fresh water.
Answer:
Explanation:
Given
mass of person is m
Distance between bridge and river is h
chord has an un-stretched length of 
Let spring constant be k
Person will just stop before hitting the river
Conserve energy i.e. Potential Energy of Person is converted in to elastic energy of chord




Thus 
Speed =distance/time
3.25=3.00/time
3.25xt=3.00
t=3/3.25
s=0.9s
The correct answer is false cause how can u fit your finger in a wall something it's to small