Answer:
a) correct answer is C
, b) 14º from the west to the north, c) v_{1g} = 300.79 km / h
Explanation:
This is a relative speed exercise using the addition of speeds.
1) when it is not specified regarding what is being measured, the medicine is carried out with respect to the Z Earth, therefore the correct answer is C
2 and 3) In this case we must compose the speed using the Pythagorean Theorem.
² =
² +
²
where v_{1a} is the speed of the airplane with respect to the air, v_{1g} airplane speed with respect to the Earth, v_{ag} air speed with respect to the Earth
in this case let's clear the speed of the airplane with respect to the Earth
v_{1g} = √(v_{1a}² - v_{ag}²)
v_{1g} = √ (310² - 75²)
v_{1g} = 300.79 km / h
we find the direction of the airplane using trigonometry
sin θ = v_{ag} / v_{1a}
θ = sin⁻¹ (v_{ag} /v_{1a})
θ = sin⁻¹ (75/310)
θ= 14º
the pilot must direct the aircraft at an angle of 14º from the west to the north
The sun is the centre of our solar system
Answer:
0.4113772 s
Explanation:
Given the following :
Mass of bullet (m1) = 8g = 0.008kg
Initial horizontal Velocity (u1) = 280m/s
Mass of block (m2) = 0.992kg
Maxumum distance (x) = 15cm = 0.15m
Recall;
Period (T) = 2π√(m/k)
According to the law of conservation of momentum : (inelastic Collison)
m1 * u1 = (m1 + m2) * v
Where v is the final Velocity of the colliding bodies
0.008 * 280 = (0.008 + 0.992) * v
2.24 = 1 * v
v = 2.24m/s
K. E = P. E
K. E = 0.5mv^2
P.E = 0.5kx^2
0.5(0.992 + 0.008)*2.24^2 = 0.5*k*(0.15)^2
0.5*1*5.0176 = 0.5*k*0.0225
2.5088 = 0.01125k
k = 2.5088 / 0.01125
k = 223.00444 N/m
Therefore,
Period (T) = 2π√(m/k)
T = 2π√(0.992+0.008) / 233.0444
T = 2π√0.0042910
T = 2π * 0.0655059
T = 0.4113772 s
Answer:
1 million dollars once
Explanation:
Well, both would be nice. In total, you will get more from the million dollars because it takes over 2,739 years to get 1 million dollars worth of pennies.(if you get 1 a day that is)
- La velocidad de las ondas sonoras es aproximadamente 1469,694 metros por segundo.
- La longitud de onda de las ondas sonoras es 1,470 metros.
1) Inicialmente, debemos determinar la velocidad de las ondas sonoras a través del agua (
), en metros por segundo:
(1)
Donde:
- Módulo de compresibilidad, en newtons por metro cuadrado.
- Densidad del agua, en kilogramos por metro cúbico.
Si sabemos que
y
, entonces la velocidad de las ondas sonoras es:


La velocidad de las ondas sonoras es aproximadamente 1469,694 metros por segundo.
2) Luego, determinamos la longitud de onda (
), en metros, mediante la siguiente fórmula:
(2)
Donde
es la frecuencia de las ondas sonoras, en hertz.
Si sabemos que
y
, entonces la longitud de onda de las ondas sonoras es:


La longitud de onda de las ondas sonoras es 1,470 metros.
Para aprender más sobre las ondas sonoras, invitamos a ver esta pregunta verificada: brainly.com/question/1070238