Answer:
t = 1.75
t = 0.04
Explanation:
a)
For part 1 we want to use a kenamatic equation with constant acceleration:
X = 1/2*a*t^2
isolate time
t = sqrt(2X / a)
Plugin known variables. Acceleration is the force of gravity which is 9.8 m/s^2
t = sqrt(2*15m / 9.8m/s^2)
t = 1.75 s
b)
The speed of sound travels at a constant speed therefore we don't need acceleration and can use the equation:
v = d / t
isolate time
t = d / v
plug in known variables
t = 15m / 340m/s
t = 0.04 s
Answer:
1.06 secs
Explanation:
Initial speed of sled, u = 8.4 m/s
Final speed of sled, v = 5.8 m/s
Coefficient of kinetic friction, μ = 0.25
Using the impulse momentum theory, we know that the impulse applied to the sled is equal to change in momentum of the sled:
FΔt = mv - mu
where m = mass of the object
Δt = time interval
F = force applied
The force applied on the sled is the frictional force, which is given as:
F = -μmg
where g = acceleration due to gravity
Therefore:
-μmgΔt = mv - mu
-μmgΔt = m(v - u)
-μgΔt = v - u
Making Δt subject of formula:
Δt = (v - u) / -μg
Δt = (5.8 - 8.4) / (-0.25 * 9.8)
Δt = -2.6/ -2.45
Δt = 1.06 secs
It took the sled 1.06 secs to travel from A to B.
Answer:
Match the scenario to the type of movement that caused it.
Ted is in his home when a strong vibration occurs that shakes the dishes out of his cupboards.
Whitney feels a slight tremor three weeks subsequent to an earthquake in a nearby town.
Sam pulls off the side of a road after feeling the road move unexpectedly while driving to work.
Foreshock
Mainshock
Aftershock
Explanation: PLZZ HELP ME I NEED TO PASS STEM!
Answer:
Minimum elastic modulus of fiber = 455.64 GPa
Explanation:
Contents of composite material = Epoxy and Unidirectional fibers
Elastic modulus of epoxy = 3.5 GPa
Elastic modulus of composite material = 320 GPa
Volume fraction of fiber = 70 %
Volume fraction of epoxy = 100 - 70 = 30%
Elastic modulus of composite material = 3.5 x 0.3 + Elastic modulus of fiber x 0.7 = 320
0.7 x Elastic modulus of fiber = 320 - 1.05 = 318.95
Elastic modulus of fiber = 455.64 GPa
Minimum elastic modulus of fiber = 455.64 GPa
Answer:
C. 10kg to 10kg
Explanation:
You have to picture to it I think