D=at²
441m=(5*9.81m/s²)(t²)
t²=441/(5*9.81)
t≈√8.99
t≈3 sec
The kinetic energy of an object is increased by a factor of 4 . By what factor is the magnitude of its momentum changed: 2.
<h3>What is kinetic energy?</h3>
- A particle or an item that is in motion has a sort of energy called kinetic energy. An item accumulates kinetic energy when work, which involves the transfer of energy, is done on it by exerting a net force.
- Kinetic energy comes in five forms: radiant, thermal, acoustic, electrical, and mechanical.
- The energy of a body in motion, or kinetic energy (KE), is essentially the energy of all moving objects. Along with potential energy, which is the stored energy present in objects at rest, it is one of the two primary types of energy.
- Explain that a moving object's mass and speed are two factors that impact the amount of kinetic energy it will possess.
The kinetic energy of an object is increased by a factor of 4 . By what factor is the magnitude of its momentum changed: 2.
To learn more about kinetic energy, refer to:
brainly.com/question/25959744
#SPJ4
Some examples of stable system are:
1) functions of sine
2) DC
3) signum
4) unit step
5) cosine.
Happy Studying! ^^
The tiny ripples on the soup are not only similar to wind-generated
waves ... they ARE wind-generated waves. This is a big part of the
reason why they bear such an uncanny resemblance.
Answer:
i. The radius 'r' of the electron's path is 4.23 × m.
ii. The frequency 'f' of the motion is 455.44 KHz.
Explanation:
The radius 'r' of the electron's path is called a gyroradius. Gyroradius is the radius of the circular motion of a charged particle in the presence of a uniform magnetic field.
r =
Where: B is the strength magnetic field, q is the charge, v is its velocity and m is the mass of the particle.
From the question, B = 1.63 × T, v = 121 m/s, Θ = (since it enters perpendicularly to the field), q = e = 1.6 × C and m = 9.11 × Kg.
Thus,
r = ÷ sinΘ
But, sinΘ = sin = 1.
So that;
r =
= (9.11 × × 121) ÷ (1.6 × × 1.63 × )
= 1.10231 × ÷ 2.608 ×
= 4.2266 ×
= 4.23 × m
The radius 'r' of the electron's path is 4.23 × m.
B. The frequency 'f' of the motion is called cyclotron frequency;
f =
= (1.6 × × 1.63 × ) ÷ (2 × × 9.11 × )
= 2.608 × ÷ 5.7263 ×
= 455442.4323
f = 455.44 KHz
The frequency 'f' of the motion is 455.44 KHz.