Answer:
A. Kindly find attached free body diagram for your reference (smiles I guess I will make a terrible artist)
B. The collision is inelastic because both the husband and the wife moved together with same velocity as he grabs her on the waist
C. The general equation for conservation of momentum in terms of m 1, v 1, m 2, v 2, and final velocity vf
Say mass of husband is m1
Mass of the wife is m2
Velocity of the husband is v1
Velocity of the wife is v2
According to the conservation of momentum principle momentum before impact m1v1+m2v2 =momentum after impact Common velocity after impact (m1+m2)vf
The momentum equation is
m1v1+m2v2= (m1+m2)vf
D. To solve for vf we need to make it subject of formula
vf= {(m1v1) +(m2v2)}/(m1+m2)
E. Substituting our given data
vf=
{(1570*58)+(2550*54)}/(1570+2558)
vf=91060+137700/4120
vf=228760/4120
vf=55.52m/s
Their speed after collision is 55.52m/s
Density is the best property to use, as while multiple different metals could create cubes with the same color, mass, or volume, no different metal could create a cube with the same mass and volume. Density is based on mass and volume, and as a result no two different metals will have the same density.
Answer:
3.25 × 10^7 m/s
Explanation:
Assuming the electrons start from rest, their final kinetic energy is equal to the electric potential energy lost while moving through the potential difference (ΔV)
Ek = 1/2 mv2 = qΔV .................. 1
Given that V is the electron speed in m/s
Charge of electron = 1.60217662 × 10-19 coulombs
Mass of electron = 9.109×10−31 kilograms
ΔV = 3.0kV = 3000V
Make V the subject of the formula in eqaution 1
V = sqr root 2qΔV/m
V = 2 × 1.60217662 × 10-19 × 3000 / 9.109×10−31
V = 3.25 × 10^7 m/s
Answer:
Momentum is conserved.
Explanation:
-Momentum is conserved.
-By Newton's third law (For every action, there is an equal and opposite reaction.)-the change in momentum of gases in one direction must be balanced by an equal change in momentum of the spacecraft in the opposite direction.
A sample of nitrogen gas has a volume of 5.0 ml at a pressure of 1.50 atm. what is the pressure exerted by the gas if the volume increases to 30.0 ml, at constant temperature is 0.25atm.
On constant temperature, the pressure and volume relation become constant before and after the change in quantitities have occurred.
According to Boyle's Law,
P₁V₁ = P₂V₂
where, P₁ is pressure exerted by the gas initially
V₁ is the volume of gas initially
P₂ is pressure exerted by the gas finally
V₂ is the volume of gas finally
Given,
P₁ = 1.5 atm
V₁ = 5 ml
V₂ = 30 ml
P₂ =?
On substituting the given values in the above equation:
P₁V₁ = P₂V₂
1.5 atm × 5 ml = P₂ × 30 ml
P₂ = 0.25 atm
Hence, pressure exerted by the gas is 0.25atm.
Learn more about Boyle's Law here, brainly.com/question/1437490
#SPJ4