Answer:
- R = ( 4.831 m , 1.469 m )
- Direction of R relative to the x axis= 16°54'33'
Explanation:
Knowing the magnitude and directions relative to the x axis, we can find the Cartesian representation of the vectors using the formula

where
its the magnitude and θ.
So, for our vectors, we will have:


and


Now, we can take the sum of the vectors




This is R in Cartesian representation, now, to find the magnitude we can use the Pythagorean theorem





To find the direction, we can use




As we are in the first quadrant, this is relative to the x axis.
The heat required to raise the temperature of the unit mass of a given substance by a given amount (usually one degree).
or C. Mass if you're on plato
Their combined momentum after they meet is 0 .
The answer would be C: Rheostat. :)
Answer:
a) W = 46.8 J and b) v = 3.84 m/s
Explanation:
The energy work theorem states that the work done on the system is equal to the variation of the kinetic energy
W = ΔK =
-K₀
a) work is the scalar product of force by distance
W = F . d
Bold indicates vectors. In this case the dog applies a force in the direction of the displacement, so the angle between the force and the displacement is zero, therefore, the scalar product is reduced to the ordinary product.
W = F d cos θ
W = 39.0 1.20 cos 0
W = 46.8 J
b) zero initial kinetic language because the package is stopped
W -
=
-K₀
W - fr d= ½ m v² - 0
W - μ N d = ½ m v
on the horizontal surface using Newton's second law
N-W = 0
N = W = mg
W - μ mg d = ½ m v
v² = (W -μ mg d) 2/m
v = √(W -μ mg d) 2/m
v = √[(46.8 - 0.30 4.30 9.8 1.20) 2/4.3
]
v = √(31.63 2/4.3)
v = 3.84 m/s