OOH! I know photosynthesis and I have been doing it in school. So the Glucose and oxygen combine to help make the photosynthesis AND it is so important to not forget about Carbon Dioxide and all the features for that because a plant needs carbon dioxide while we need oxygen and plants give out oxygen so that humans can have it and we breathe out carbon dioxide so that plants can have it. We pretty much just help each other out. I plants weren't there than humans wouldn't be there. Hope this helps!
Answer:If we dissolve NaF in water, we get the following equilibrium:
text{F}^-(aq)+text{H}_2text{O}(l) rightleftarrows text{HF}(aq)+text{OH}^-(aq)
The pH of the resulting solution can be determined if the K_b of the fluoride ion is known.
20.0 g of sodium fluoride is dissolve in enough water to make 500.0 mL of solution. Calculate the pH of the solution. The K_b of the fluoride ion is 1.4 × 10 −11 .
Step 1: List the known values and plan the problem.
Known
mass NaF = 20.0 g
molar mass NaF = 41.99 g/mol
volume solution = 0.500 L
K_b of F – = 1.4 × 10 −11
Unknown
pH of solution = ?
The molarity of the F − solution can be calculated from the mass, molar mass, and solution volume. Since NaF completely dissociates, the molarity of the NaF is equal to the molarity of the F − ion. An ICE Table (below) can be used to calculate the concentration of OH − produced and then the pH of the solution.
Explanation:
Answer:
CaF2 + CO3- ----> CaCO3 + 2 F-
Explanation:
The chemical compounds found on the left side of the date are the reagents and those found on the right are the products, where calcium carbonate appears.
Calcium carbonate is a quaternary salt
The question is incomplete, the complete question is;
The student collects the H2(g) produced by the reaction and measures its volume over water at 298 K after carefully equalizing the water levels inside and outside the gas-collection tube, as shown in the diagram below. The volume is measured to be 45.6mL . The atmospheric pressure in the lab is measured as 765 torr , and the equilibrium vapor pressure of water at 298 K is 24 torr .(i) The pressure inside the tube due to the H2(g)
Answer:
741 torr
Explanation:
From the question we can see that the atmospheric pressure in the lab is 765 torr.
The vapour pressure of water = 24 torr
From Dalton's law of partial pressure, we know that;
Total pressure = Pressure of the H2 + Partial pressure of water vapour
Therefore;
Pressure of H2 = Total pressure - Partial pressure of water vapour
Pressure of H2 = 765 torr - 24 torr = 741 torr