Answer:
A. False.
Every substance contains the same number of molecules i.e 6.02x10^23 molecules
B. False.
Mass conc. = number mole x molar Mass
Mass conc. of 1mole of N2 = 1 x 28 = 28g
Mass conc. of 1mol of Ar = 1 x 40 = 40g
The mass of 1mole of Ar is greater than the mass of 1mole of N2
C. False.
Molar Mass of N2 = 2x14 = 28g/mol
Molar Mass of Ar = 40g/mol
The molar mass of Ar is greater than that of N2.
Explanation:
A good feeling, but i'm not sure what it's called
Answer:
See attached picture.
Explanation:
Hello!
In this case, since C2H3Cl is an organic compound we need a central C-C parent chain to which the three hydrogen atoms and one chlorine atom provides the electrons to get all the octets except for H as given on the statement.
In such a way, on the attached picture you can find the required Lewis dot structure without formal charges and with all the unshared electron pairs, considering there is a double bond binding the central carbon atoms in order to compete their octets.
Best regards!
Answer:
pH = 2.69
Explanation:
The complete question is:<em> An analytical chemist is titrating 182.2 mL of a 1.200 M solution of nitrous acid (HNO2) with a solution of 0.8400 M KOH. The pKa of nitrous acid is 3.35. Calculate the pH of the acid solution after the chemist has added 46.44 mL of the KOH solution to it.</em>
<em />
The reaction of HNO₂ with KOH is:
HNO₂ + KOH → NO₂⁻ + H₂O + K⁺
Moles of HNO₂ and KOH that react are:
HNO₂ = 0.1822L × (1.200mol / L) = <em>0.21864 moles HNO₂</em>
KOH = 0.04644L × (0.8400mol / L) = <em>0.0390 moles KOH</em>
That means after the reaction, moles of HNO₂ and NO₂⁻ after the reaction are:
NO₂⁻ = 0.03900 moles KOH = moles NO₂⁻
HNO₂ = 0.21864 moles HNO₂ - 0.03900 moles = 0.17964 moles HNO₂
It is possible to find the pH of this buffer (<em>Mixture of a weak acid, HNO₂ with the conjugate base, NO₂⁻), </em>using H-H equation for this system:
pH = pKa + log₁₀ [NO₂⁻] / [HNO₂]
pH = 3.35 + log₁₀ [0.03900mol] / [0.17964mol]
<h3>pH = 2.69</h3>