Answer:
109.7178g of H2O
Explanation:
First let us generate a balanced equation for the reaction. This is illustrated below:
2C3H8O + 9O2 —> 6CO2 + 8H2O
Next we will calculate the molar mass and masses of C3H8O and H20. This is illustrated below:
Molar Mass of C3H8O = (3x12.011) + (8x1.00794) + 15.9994 = 36.033 + 8.06352 + 15.9994 = 60.09592g/mol.
Mass of C3H8O from the balanced equation = 2 x 60.09592 = 120.19184g
Molar Mass of H2O = (2x1.00794) + 15.9994 = 2.01588 + 15.9994 = 18.01528g/mol
Mass of H2O from the balanced equation = 8 x 18.01528 = 144.12224g
From the equation,
120.19184g of C3H8O produced 144.12224g of H20.
Therefore, 91.5g of C3H8O will produce = (91.5 x 144.12224) /120.19184 = 109.7178g of H2O
Answer:
Here's what I get.
Explanation:
Quinine contains phosphors, substances that glow when they are hit with certain wavelengths of light.
The phosphors in quinine absorb UV light, which is invisible to our eyes.
Electrons in the phosphors absorb the UV energy and are excited to higher energy levels.
When the electrons drop back to lower energy levels, they emit some of this energy as a glowing blue visible light.
I think its A.
if one force cannot overcome the other, the object remains stationary.
Answer:
Explanation:
final temperature of the cube
initial temperature of the cube
mass of the cube
specific heat of aluminum