The half cell in which the electrode gains electrons is where reduction occurs, and the half cell in which the electrode loses electrons is where oxidation occurs.
<h3><u>What is a Galvanic cell ?</u></h3>
Voltaic or galvanic cells are electrochemical devices that use spontaneous oxidation-reduction events to generate electricity. In order to balance the overall equation and highlight the actual chemical changes, it is frequently advantageous to divide the oxidation-reduction reactions into half-reactions while constructing the equations.
Two half-cells make up most electrochemical cells. The half-cells allow electricity to pass via an external wire by separating the oxidation half-reaction from the reduction half-reaction.
<h3><u>
Oxidation:</u></h3>
The anode is located in one half-cell, which is often shown on the left side of a figure. On the anode, oxidation takes place. In the opposite half-cell, the anode and cathode are linked.
<h3><u>Reduction:</u></h3>
The second half-cell, cathode, which is frequently displayed on a figure's right side. The cathode is where reduction happens. The circuit is completed and current can flow by adding a salt bridge.
To know more about processes in Galvanic cell, refer to:
brainly.com/question/13031093
#SPJ4
Answer:
See explanation.
Explanation:
Hello,
In this case, we say that chemical reactions are governed by the law of conservation of mass, which states that matter cannot be neither created nor destroyed by transformed, for that reason, we need to balance chemical reactions in order to ensure all the atoms to be in the same quantity at both reactants and products.
Moreover, equilibrium is defined as such condition at which the concentration of both reactants and products stop changing over the time so they become constant as well as their null reaction rate.
A widely acknowledged reaction is the HABER one which consists on the synthesis of ammonia by using elemental nitrogen and hydrogen:

In such reaction, we have two nitrogens at both reatants and products and six hydrogens at at both reatants and products for us to obey the law of conservation of mass. Furthermore, as the time goes by, nitrogen reacts with hydrogen, nonetheless, they do not react indefinitely, they have a limit that is equilibrium, so their moles stop being consumed and remain unchanged as well as the produced moles of ammonia.
Best regards.
Answer:

Explanation:
Given that:
Half life = 30 min
Where, k is rate constant
So,
The rate constant, k = 0.0231 min⁻¹
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given that:
The rate constant, k = 0.0231 min⁻¹
Initial concentration
= 7.50 mg
Final concentration
= 0.25 mg
Time = ?
Applying in the above equation, we get that:-

What is likely to occur if sulfur forms an ionic bond with another element is <u>sulfur will accept electrons</u>
<u><em> explanation</em></u>
- Ionic bond is formed when a metal react with a non metal.
- Metal loses ( donate) electrons to form cation ( a positively charged ion) , while non metal accept (gain) electrons to form anion ( a negatively charged ion ).
- Sulfur is a non metal therefore it accept electrons if it form an ionic bond with a metal. sulfur accept 2 electrons to form S2- ion