B. The energy barrier between reactants and products
hope this helps!
(:
How you're going to answer this question is by doing a mole t - chart first you're going to put 2.40 mol of C8H18 opposite of the mol then you're going to find o2 which 256 on the bottom then multiply across to get the answer.
Hope this help, message me if you need more help
Answer:hope we can be friends
can i please get brainliest
Although phlorizin inhibition of Na+-glucose cotransport occurs within a few seconds, 3H-phlorizin binding to the sodium-coupled glucose transport protein(s) requires several minutes to reach equilibrium (the fast-acting slow-binding paradigm). Using kinetic models of arbitrary dimension that can be reduced to a two-state diagram according to Cha’s formalism, we show that three basic mechanisms of inhibitor binding can be identified whereby the inhibitor binding step either (A) represents, (B) precedes, or (C) follows the rate-limiting step in a binding reaction. We demonstrate that each of mechanisms A–C is associated with a set of unique kinetic properties, and that the time scale over which one may expect to observe mechanism C is conditioned by the turnover number of the catalytic cycle. In contrast, mechanisms A and B may be relevant to either fast-acting or slow-binding inhibitors.
Explanation:
Answer:
Molality = 0.43 m
Explanation:
Given data:
Mass of barium sulfide = 25.4 g
Mass of water = 349 g (349 g/1000 = 0.349 Kg)
Molality of water = ?
Solution:
Number of moles of barium sulfide:
Number of moles = mass/molar mass
Number of moles = 25.4 g/169.39 g/mol
Number of moles = 0.15 mol
Molality:
Molality = number of moles o f solute/ Kg of solvent
Molality = 0.15 mol / 0.349 Kg
Molality = 0.43 m
A. ATOMS CAN NOT BE DIVIDED (INDIVISIBLE)